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Free Energy of the Solvable Chiral Potts Model 
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Very recently, it has been shown that there are chiral N-state Ports models in 
statistical mechanics that satisfy the star-triangle relation. Here it is shown that 
the relation implies that the free energy (and its derivatives) satisfies certain 
functional relations. These can be used to obtain the free energy: in particular, 
we expand about the critical case and find that the exponent ~ is 1 - 2 I N .  
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1. I N T R O D U C T I O N  

The star-triangle (or Yang-Baxter) relation and its generalizations play a 
central role in the theory of exactly solvable models in statistical 
mechanics. (1'2) Very recently, (3-5~ solutions of this relation have been found 
for a restricted class of N-state chiral Potts models. (1 shall call models 
"solvable" if they belong to this class.) Unlike the previous solutions for 
othe, r models, they do not have the "difference property," where the 
Boltzmann weights of a vertex can be expressed as a function of the 
difference of the "rapidities" of the two lines through that vertex. 

For the other models, this difference property makes it straightforward 
to obtain the free energy from the inversion relation (or unitarity 
condition) (2'6'v) and to obtain single-spin expectation values (e.g., the Ising 
model magnetization) by using the corner transfer matrix technique. (2'8) 
Without it, it is not clear how best to proceed. 

Here I adapt the "399th" method used for the Ising model (w of 
ref. 2; ref. 9). I show that the star-triangle relation implies certain functional 
relations for the free energy and correlations of the solvable chiral Potts 
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model and that these can be solved. In particular, I expand about the 
critical case, obtaining the result 

~ =  I - 2 / N  (1.1) 
for the critical exponent ~. 

2. G E N E R A L Z - I N V A R I A N T  M O D E L  

First consider a very general Z-invariant model. ('~ One has a collec- 
tion of straight lines in the plane, line j carrying a rapidity variable pj. 
These lines form a graph if, spins live on alternate faces of if, and two 
spins are adjacent if their faces touch at a vertex of ft. Each spin ~ takes the 
values 1,..., N. Two adjacent spins a and b contribute to the partition 
function Z a weight Wpq(a, b) if they are arranged as in Fig. la (in which 
case we call them a W-pair) and a weight VCpq(a, b) if arranged as in 
Fig. lb (a W-pair). The p and q are the rapidities of the two intervening 
lines; Wpq(b, a) is not necessarily equal to Wpq(a, b). Thus, 

Z= • l-[ Wpq(gi, aj) (2.1) 
{~} (/J> 

where the sum is over all values of all the spins ~rl, ~2,...; the product is 
over all adjacent pairs (i, j) of spins ~i, aj. For each pair or "edge," (ri and 
~j must be ordered as are a and b in Fig. 1 (p and q being the intervening 
line rapidities), and mpq m u s t  be replaced by l~pq, as they are a W-pair. 

A model is "Z-invariant" if W, W satisfy the star-triangle relation: 
N 

2 l~qr(b, d) Wpr(a , d) lg'pu(d, c) = Rpq r Wpq(a, b) l~pr(b , C) Wq~(a, c) (2.2) 
d=l 

b 

s ~ s J �9 

�9 j �9 

�9 �9 s C ~  �9 

P q P q 

Wpq(a- b) Wpq(a- b) 

Fig. 1. The two Boltzmann weights depending on the orientation of the spin pair with 
respect to the rapidity lines p and q. 
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which can be represented graphically as in Fig. 2 of ref. 5. (A more sym- 
metric form of the equation can be obtained by reversing the direction of 
line q.) 

2.1. Expectat ion Values 

I begin with some general comments that apply to any model 
satisfying (2.2), e.g., the Ising, self-dual Ashkin-Teller (which is equivalent 
to the eight-vertex model), or critical Potts model.(2'll) The product in (2.1) 
is a function of ~1, %,. . :  write it as P{a}. Let F(a, b) be an arbitrary 
function of two adjacent spins a and b (and other parameters): then its 
expectation value on an edge (i, j), with weight function Wpq(ai, crj), is 

<FI Wpq> = Z  -1 ~ F(ai, ~rj) P{a} (2.3) 

On an edge with weight function ffZpq(a i, aj), its expectation value is 
still given by (2.3), but is written as (F J  l~pq>. A vital property of a Z-in- 
variant model is that in the large-lattice limit, <F(Wpq> and (F[ ff'pq> 
depend on the rapidities p and q of the two lines between spins al and aj, 
but not on the rapidities of any other lines. ~1~ 

Derivatives of In Z can be expressed as sums-over-edges of particular 
expectation values, notably 

'n< <1 
(2.4) 

For all the models mentioned above except the critical Potts model, the 
weights Wpq, VVrpq of all edges also depend on a single "universal" modulus 
k, so for these we also need 

These functions Apq ..... Cpq depend only on the rapidities p and q (and 
possibly the modulus k): they are the same for any lattice. 

2.2. Honeycomb and Tr iangular  Lattices 

Now take ~r to be the Kagom~ lattice. The spins form either the 
honeycomb or the triangular lattice, depending on which set of alternating 
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faces of f# they occupy (Chapter 11 of ref. 2). Give parallel lines equal 
rapidity, so there are three distinct rapidities p, q, and r, as in Fig. 2 of 
ref. 5. Let the honeycomb (triangular) lattice have 2L (L) sites, and let 
ZI~(p, q, r) [Zr(p,  q, r)] be its partition function. Then from (2.2) 

ZH(p, q, r) i~ r) = Rpq~Zr( p, q, (2.6) 

The honeycomb (triangular) lattice has L edges with weight function ~Tqr 
(Wqr), L with Wpr (ff'pr), and L with ff'pq (Wpq). Differentiating 
in Z~i(p, q, r), using (2.1) and (2.4), we obtain 

L-1 0 7p In Z , ( p ,  q, r) = Apt + Apq 

L -  1 O ~qq in ZI4(p, q, r) = Aqr -~- npq 

Or in ZH(p, q, r) = nqr Ar Bpr 

(2.7) 

I emphasize that any rapidity dependence is here shown explicitly: e.g., Apr 
is independent of q. 

It follows from (2.7) that 

O _ O _ 
~q Apq='@p Bpq 

and hence 3 a function (Spq such that 

-- ~- ~l pq., Bpq -- 2pq up 0q 

(2.8) 

- - - -  ( ; p q  ( 2 . 9 )  

Similarly, ~ l p q  such that 

0 0 
Apq -- Op @pq' Bpq - Oq @pq (2.10) 

It follows immediately from (2.7) that L -1 In Z I~(p, q, r) + i~ q r -~- @ pr "~ ~l pq 
is a "constant" (i.e., independent of p, q, and r). A similar argument (with 
barred and unbarred variables interchanged) applies for the triangular 
lattice. The two constants can be absorbed into ~lpq and ~pq (which are 
then defined uniquely), giving 

L -1 in Zh,(p, q, r)= - - ~ q r - - ~ p r - - I ~ p q  
(2.11) 

L -1 In ZT(p, q, r) = --Oqr- ~)pr- Opq 



Solvable Chiral Potts Model 643 

From (2.6), it follows that 

where 

Al~pqr = f p q f q r / f p r  (2.12) 

In fpq = ~pq - ~lpq --~ gp - gq (2.13) 

where gp is an arbitrary function. This verifies the conjecture (12) of ref. 5. 
We can think of @pq, ~lpq as free energies per edge (one for each edge 

type). Usually, if we can solve the star-triangle relation (2.2), then we know 
the factor Rpqr, and hence f;q. Then (2.13) is a relation between the two 
free energies. 

In all the models, we can ensure that 

Wpp(a, b)= 1, lim Wpq(a, b)/Wpq(O, O)=6a, b (2.14) 
q---~ p 

Taking p = q = r, the honeycomb and triangular models become trivial, and 
from (2.11 ) we find 

@ p = 0 ,  lira [~pq+ln  ff/pq(0,0)] = 0  (2.15) 
q ~ p  

2.3. Square  Lat t ice 

If we let r --* q in the honeycomb and triangular models, the Wq, edges 
disappear, while l~qr edges contract to a point. Both models then reduce to 
the square-lattice chiral Potts model of L sites, with weight functions Wpq 
and ffZpq on horizontal and vertical edges, respectively. Hence, using (2.15), 
the square lattice partition function is given by 

Z -1  In Zsq(P  , q) = -@q - ~lpq (2.16) 

2.4. k - D e r i v a t i v e s  

If the model also has a variable modulus k on which the weights, 
expectations values, and free energies implicitly depend, then differentiating 
the partition functions, using (2.11), gives 

~pq "~ hp - hq Cpq -~- ~ k  

(2.17) 

where the function h e is yet to be determined. 
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To summarize: ~lpq and (ipq are uniquely defined by (2.9)-(2.11) and 
can be regarded as "edge free energies." Their difference is given by (2.13), 
and their derivatives (2.9), (2.10), and (2.17) yield the Z-invariant edge- 
expectation functions Apq ..... Cpq, The single-rapidity functions gp and hp 
also have to be determined from these equations. All these functions may 
depend implicitly on the elliptic modulus k (and on any other "universal" 
variables, e.g., the four-spin coupling in the eight-vertex/Ashkin-Teller 
model). 

If one has some further information, notably linear relations between 
Apq, Bpq, Cpq (and Apq, Bpq, Cpq), then it may be possible to solve the 
system of equations for @pq, ~lpq. Basically this is the method used in ref. 9 
to solve the Ising model. Here we adapt it to the chiral Potts model. 

3. CHIRAL POTTS MODEL:  EQUATIONS FOR qJpq, ~Jpq 

Now we specialize to the chiral Potts model. The functions Wpq, Wpq 
are defined in ref. 5. Here it is convenient to work not with the ap,..., dp 
therein, but with variables Op, Op, Up, Vp defined by 

e i~ = e-r~i/Nbp/Cp, e i~ = ap/dp 
(3.1) 

Up = N(Op + r Vp = N(Op - r 

From Eq. (9) of ref. 5 

sin Vp = k sin Up 
(3.2) 

cos vp = (1 - k  z sin 2 Up) 1/2 

Hence if k is given, then any one of Op, ~)p, Up, Vp specifies the other three. 
They are all functions of the rapidity p, which we can choose to be up, i.e., 

Up =- p (3.3) 

We shall need two functions: 

Sp = OVp/Ok = sin Up~COS Vp 
(3.4) 

tp = OVp/Op = k cos Up/COS Vp 

We shall usually take k, Up, Vp to be real, with 

0 < k <  1, -rc /2<vp<Tc/2  (3.5) 

Define a function T(O; n), for integer n, by 

T(O;n) / NO\ -"IN F 0 72(2j-- 1)] N , v(0;0)_-tcos-5- )  sinL-   j; FI r(0;n)=l 
j = l  n=O 

(3.6) 
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Then the Boltzmann weight functions of the chiral Ports model are 

Wpq(a, b) = T(Oq - ~p; a - b)/T(Op - Oq; a - b) 

ffZpq(a,b)=T (~,-r T Oq-O~-~;a-b 
(3.7) 

They (and the constituent T factors) are positive if O<Uq--Up<T~ [this 
follows from (3.33)]; they are periodic functions of a -  b with period N and 
are normalized so that 

N--1 N--I 
H Wpq(b + ~, b) = H ~/'pq(b -]- n, b)  = 1 (3,8) 

n=0 n=O 

They satisfy the constraints (2.14). 
Obvious ly  Wpq(a, b) depends on p, q, and k only via Oq--Op and 

Op - Oq, i.e., via Uq- Up and Vp + Vq. If we temporarily regard Wpq(a, b) as a 
function of Up-Uq, Vp + Vq, and Vq-Vp (instead of p, q, and k), then its 
derivative with respect to Vq-vp vanishes. Returning to the variables p, q, 
and k, this implies 

where 

~pq mpq( (I, b) = O (3,9) 

~ q = ( S p ' J I - S q ) ( L " ~ - L ~  (tp"~- (3,10) 
\#p a q J -  gq)-~ 

Hence, using 
hand, from (2.4) and (2.5), and (2.9), (2.10), and (2.17): 

( ~ p q  in Wpq t Wpq ) = (Sp -Jr- Sq)(Apq -t- Bpq) -- (tp + lq) Cpq 

~- -- ~pq~l pq -- ( tp -~ tq)(hq - hp) 

(4), (2,epq In Wpq I Wpq) = <0 [ W p q ) = 0 ,  On the other 

(3.11) 

so 

~pq~/ pq = (tp q7 tq)(hp -- hq) 

Similarly, mpq(a, b) depends only on Uq-Up 
derivative with respect to Vp + Vq vanishes, giving 

~pq Wpq( a, b) = 0 

where 

and 

( 0 + 0 )  O 
~pq = (Sp --Sq) k ~  p ~q] -- (tp -- tq)  a'k 

(3.12) 

Vq--Vp, SO its 

(3.t3) 

(3.14) 
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This leads to 

~pql~pq = ( tq - tp)(hp - hq) (3.15) 

Eliminating fflpq between (2.13) and (3.15), 

~pq(~/pq -- In fpq + gp - g q )  = ( t q  - tp)(hp - h q )  (3.16) 

The rest of this paper is concerned with solving the two equations (3.12) 
and (3.16) for gp, hp, and ~pq. 

3.1. Consistency Condi t ion 

In terms of variables btq--Up, 1)q--Up, and Uq-[-/)p, the operators t~pq 
and 2pq are the derivatives with respect to Vq- Vp and Vq + vp, respectively, 
multiplied on the left by 

2(Sptq - Sqtp) = 2k sin(up - Uq)/(cos Vp cos Vq) 

Defining a function 

~)pq = k 1 cos  Up cos  Vq (3.17) 

it follows (because of the general mathematical relation 02/Sx(?y= 
~2/8y Ox) that ~pq and ~,pq satisfy the commutation relation 

~pq ~ pq ~pq = ~pq ~)pq ~pq (3.18) 

This can be verified directly. 
Multiplying (3.12) on the left by ~pq~]pq, (3.16) by ~pq~)pq, and sub- 

tracting, it follows that the single-rapidity functions gp and hp must satisfy 
the consistency condition: 

~pq~;pq(tp + tq)(hp - hq) 

= ~pq~)pq{ (tq -- tp)(hp - hq) q- ~ p q ( l n  L q  - gp "~- gq)}  (3 .19)  

3.2. The funct ion  fpq 
We need to know f p q  (or at least 2pq lnfpq). This is given in Eq. (13) 

of ref. 5. Unfortunately, this equation is only a conjecture, but it has been 
stringently tested numerically, is correct for the k = 0 and N =  2 cases, and 
has the right symmetry properties. It would be amazing if it were wrong. 

Equation (13) of ref. 5 can be simplified by noting that the numerator 
is the Nth root of the determinant of an N by N matrix with elements 
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Mab = Vg'pq(a, b). This matrix depends on the variables p and q (and k), so 
we can write it as Mpq. Then it satisfies the inversion relation 

MpqMqp = Spq~ (3.20) 

where 

sin(uq-Up) { N(Oq-Op) sinN(O ~)p)}(1N)/N 
Spq = Nsin[-(~--q-Up--~-N] 4 sin 2 q'2- (3.21) 

Because of the normalization (3.8), the denominator in Eq. (13) of ref. 5 
is unity. It follows that fpqfqp = Spq. Noting that the elements of mpq a r e  

rational functions of exp[i(Oq- Op)l and exp[i(~bq- ~bp)], one can go on to 
establish that 

f u  = det I~Ipq 

U N/2 1-iN j l  1 {2 sin[(Uq -- Up + ~zj)/N} j 
= {4 sin[N(Oq - Op)/2] sin[N(~bq - ~bp)/2] }(u-1)/2 (3.22) 

Thus fpq depends on p, q, and k only via Uq - Up and Vq - Vp. It follows at 
once that 

~pq In fpq = 0 (3.23) 

Indeed, this property follows at once from (3.13), provided one simply 
notes that fpq depends on p, q, and k only via lTIZpq(a, b). It is the main 
property of fpq that we shall use herein. 

3.3. Low-Temperature Limit: k - .  1 

One can easily see that (3.12) and (3.16) are unchanged by adding to 
@q an arbitrary function of Uq - Up only. To fix @pq, w e  therefore need an 
extra piece of information, and this can be obtained by looking at a 
"low-temperature"-type limit, where k ~ 1, while Up, Uq remain fixed, in the 
range - ~/2 < Up, Uq < ~/2. Then ~bp, ~q --~ 0 and -- rc/N < Op, Oq < r(N; 
in Wpq(a, b) tends to a finite limit, with Wpq(O,O)>~ Wpq(a,b), while 
Wpq(a, b )/~Zpq(O, O) ~ (~ a,b' 

The system is then ordered with all spins equal, so 

~[Ipq= --in Wpq(O, O), t~pq+ln H/pq(O,O)=~pq+ln fpq=O (3.24) 

Hence, using (3.7), 

@pq = gq -- gp (3.25a) 
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where 

N+ 1- 2J ln {2 sin (J-1/2)TC- Up} (3.25b) 
gP= N N 

j = l  

We see at once that (2.13) is satisfied, so gp therein is given by (3.25b), 
provided k = 1 and - 1r/2 < Up < ~/2. 

3.4. Symmetries 

In ref. 5 it was remarked that the model has a rotation symmetry: p, 
q ~ q, Rp, and a reflection symmetry: p, q-~ Sq, Sp. In terms of our 
variables, Rp and Sp are defined by 

ORe = r + re~N, r  = O~ + ~/N, 

bl Rp ~ Up -~ ~, U Rp ~ --Up 

0 ~  = - r  - ~ / N ,  r = - 0 ~  - ~ / N  

blSp ~ --Up -- 7"f,, I) Sp ~ Up 

(Thus, R p = p  + rt, Sp= -p-Tr.) Then 

mq, Rp(a , b ) =  l~pq(a, b), 

msq,  sp(a, b ) =  Wp, q(a, b),  

Wq, Rp(a, b)= Wpq(b, a) 

Wsq, sp( a, b)= VVp, q( b, a) 

(3.26) 

(3.27) 

(3.28) 

It follows that 

Aq, Rp = Bpq, Bq, ep = Apq,  Cq, Rp = Cpq 

A sq, s p = --Bpq,  Bsq, s p = - A p q ,  Csq, s p ~-~ Cpq 
(3.29) 

and similarly with barred and unbarred variables interchanged. Also, 
replacing p, q, and r by q, r, and Rp (and by Sr, Sq, and Sp) leaves the 
honeycomb and triangular lattices unchanged, apart from a rotation 
(reflection). From (2.9)-(2.11) and (2.17), we get 

@q, Rp=~]pq-~-1~, ~]q, Rp=@pq -~1  
(3.30) 

~I Sq, S p = ~J pq, ~I Sq, S p = ~l pq 

h Rp - hp = drl/dk (3.31) 

hsp + hp = ~ (3.32) 

where q = r/(k), ~ _= ~(k) are functions only of k. 
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From (3.1) and (3.2), we can establish the rather remarkable identity 

4 sin[N(Oq - Op)/2] sin [N(q~q- q~p)/2] cos [N(0p -Oq)/2~ 

x cos [N(r - Oq)/2] = k '2 sin2(Uq - Up) (3.33) 

where 

k' = (1 - k2) I/2 (3.34) 

is the conjugate modulus of k. Using this and (3.22), we find 

f p q L ,  Rp = N / k ' ( N -  1)/N (3.35) 

and fsq, sp =fpq. From (2.13) and (3.30), it follows that 

gRp - -  gp = 2~/- In N +  ~ 1  Ink '  
~ V  (3.36) 

gsp q- g p =  T 

where r = r(k) is a function only of k. 

3.5.  I n v e r s i o n  R e l a t i o n  

Another symmetry is provided by (3.20), together with 

Wpq(a, b) Wqp(a, b ) =  1 (3.37) 

This implies that if we consider a transfer matrix going in the direction of 
the fix edges, for both the honey comb and triangular lattices this matrix is 
inverted by interchanging p with r (apart from scalar factors involving Spq, 
Sqr, Spr). This negates the free energy, so from (2.11) we get 

~l qr"~[~pr"~'~pq-~ ~l qp-~-~/rp-~ ~Irq: --]n(SpqSqr ) (3.38) 

~l qr -~ ~pr "q- ~]pq "Jr- ~qr "~ ~]pr + ~lpq = --ln Spr (3.39) 

From these equations, together with Spq = Sqp, we can deduce that 

~pq + @qp = 0 
(3.40) 

~lpq + ~l qp = --In Spq = - I n  fpq fqp 

These relations are consistent with (2.13). 
For the eight-vertex and other previously solved models, ~lpq is a 

function only of p- -q ,  and there is the very direct "inversion relation 
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method" for obtaining ~Jpq immediately from (3.40). (7'12) However, this 
method does require an assumption that ~Jpq be analytic in a particular 
complex domain. Here I use this method only to obtain the isolated k = 0 
result (6.15) (previously obtained by Fateev and Zamolodchikov), (15) and 
in principle one can avoid doing even this. For nonzero k I emphasize that 
here I do not use this method, and do not make such an analyticity 
assumption (partly because sufficient understanding is lacking to be able to 
do so with any confidence). My only assumptions (some of which can 
probably be easily proved) are: 

1. Local differentiability for Up, Uq, k real, 0 < Uq - Up < ~r, 0 < k < 1. 

2. For - 7r/2 < Up < Uq < ~/2, that Apq,..., Cpq are Taylor-expandable 
in powers of k '2-- 1 -  k 2 (this fits with series expansions and the 
N = 2 Ising case). 

3. That ~lpq, Apq,..., Cpq tend to finite limits as k--, 0. 

3.6. Derivatives of the Square Lattice Free Energy 

From (2.16), the free energy per site of the square lattice is 

i~(Sq) = ~lpq -~- Ippq = 2~lpq + gp -- gq --ln fpq pq (3.41) 

Let us define, as functions of p, q, and k, 

Apq = I11 (Sq) -~- ln fpq = 2~Jpq + gp - -  gq Tpq 

Cpq ~- COS Up COS Uq - -  k '2 sin Up sin b / q  

Xp = ~gp/~p, yp = 2khp - k Ogp/Sk 

(3.42) 

(3.43) 

(3.44) 

Then from (3.10), (3.12), (3.14), (3.16), and (3.23) it follows that 

(3Apq = s i n ( u p  + Uq) (Xq - Xp) -}- Cpq(yq - yp) (3.45) 
Ok k cos Vp cos Vq 

(O--b ~ ) - ~ p  -~q Apq= Cpq(Xq-Xp)-k '2s in(up+Uq)(Yq-YP) (3.46) 
CON Up COS 1)q 

Thus if we know the single-rapidity functions Xp, yp, then we can obtain 
Apq by integrating either (3.45) or (3.46). The consistency condition (3.19) 
ensures that both ways can give the same result. 

In the next two sections I show that this condition defines Xp, yp (to 
within additive terms independent of p). 
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4. E Q U A T I O N S  FOR xp, yp 

Define 

0 t ~3 (4.1) 

Then f rom (3.10) and (3.14), 

~pq = ~p + ~q, ~pq = &Op -- LPq (4.2) 

while f rom (3.18) 2~p7pqL~q= LPqTpqY~p. Using (3.23), it follows that  (3.19) 
can be writ ten as 

Opq + Oqp = 0 (4.3) 

where 

Opq = =.~q'~pq(2tqhp q- ~q gp) - ~s + ~p gp) (4.4) 

F r o m  now on we shall find it convenient  to work  with the functions 
Xp, yp defined by (3.44), ra ther  than  with gp, h e, Using (3.4) and (3.17), we 
can write (4.4) as 

Dpq -~ ~ q [ k  -1 cos l) p (xp sin Hq + yp COS Uq) ] 

-- 5ep[k -1 cos Vq (Xp sin Up + yp cos Up)] (4.5) 

Define two auxil iary functions 

63Xp 63yp Ap = ~ + kk '2 --~ - 2yp 

(4.6) 
~YP k 6GXp 

Yp =T p oh 

Then,  on expanding (4.5), using (3.4) and (3.2), we find that  

Dpq = sin(Uq - up)Epq/(k cos vp cos Vq) (4.7) 

where 

Epq = ~p sin(up + Uq) + 2Xp COS(Up + Uq) 

+ )3p(COS Up COS Uq -- k '2 sin up sin uq) (4.8) 
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If we now define 

Xp = 2p sin Ltp "q- (2Xp + f~p) cos Up 

Yp = 2p cos Up - (2Xp + k'2f~p) sin Up 
(4.9) 

then 

Epq = ~p cos Uq --~ Yp sin Uq (4.10) 

The consistency condition (4.2) is equivalent to Epq = Eqp for all p, q. 
From (4.10) it follows that there are only two independent linear com- 
binations of the functions Xp, Y;, cos Up, sin Up. Hence there must exist 
parameters c~, fi, 6 (independent of p, but still implicitly dependent on k) 
such that 

Xp = c~ cos up + fl sin up, Yp = fi cos Up + 6 sin Up (4.11) 

[The equality of the two parameters fl is a consequence of (4.10).] 
Solving (4.9) and (4.11) for 2p, ~;, then using (4.6), we get 

(~3Yp k ~Xp ~ 2Xp + \ Op --~} cos 2 v; = ~ - (c~ + 6) sin 2 up (4.12a) 

/OXp Oyp \ 
-k2xp sin 2up + ~--~p + k k ' 2 - - ~ -  2yp) cos2 v, 

1 (k,2 e + ~) sin 2Up + fl cos 2 vp (4.12b) 
2 

This is a pair of coupled linear partial differential equations for Xp, yp. We 
can eliminate yp by dividing (4.12b) by cos 2 Vp, differentiating with respect 
to p, and using (4.12a). The result simplifies considerably if we introduce a 
function Gp by 

Xp = kZGp/COS Vp (4.13) 

Then we obtain 

~__s OGp\ 2 ~2Gp k2( )" q- P cos  2Up) (4.14) 
k kk '2 --'~') - k Gp + ~ = cos  Vp 

where 

- m  
a - k ' 2 b  k '2 d k d [ k ' 2 ( a + 6 ) ]  (4.15) 

k 4 ~ - ~ - ' ~ ( ~ - ~ ) ,  12- 2 d k k k  4 
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Choice  of  A r b i t r a r y  Parameters  

The equations (4.12) are homogeneous and linear in the unknown 
functions Xp, yp, c~, fi, 3. They admit two particularly simple solutions: 
Case (i) 

Case(ii) 

yp = independent of p 

j~ = k k '  2 dyp _ 2yp 
dk 

(4.16) 

yp=/~=0 
Xp = independent of p 

(4.17) 
C~ = 2Xp -- k dxp/dk 

(~ = -2Xp --k kk  '2 dxp/dk 

We are therefore free to add such solutions, provided we leave 
unchanged (as we can) the k = 1 boundary condition (3.25) and the k ~ 0 
finiteness requirements. 

From (3.44), adding a solution of type (i) merely increments gp and hp 
by terms independent ofp.  This has no effect on (2.13), (3.12), or (3.16), 
and so it does not change the free energies @pq, I/Ipq. It does change fl, so 
we can use this freedom to ensure that 

f l = 0  (4.18) 

Adding a solution of type (ii) increments Xp by some arbitrary 
function ~b(k) (independent of p). This induces increments p(~(k) and 
pO'(k)/2 in gp and hp and causes both Opq and - ~ p q  to be incremented by 
( q -p )q k ( k ) / 2 .  This affects (in a trivial way) the expressions (2.9) and 
(2.10) for the expectation values Apq,..., Bpq. However, it does not change 
the expressions (2.11) and (2.16) for the free energies of the honeycomb, 
triangular, and square lattices; nor does it change (3.45) or (3.46). Thus, if 
we only consider these total free energies, we are free to add a solution of 
type (ii). This will change c~ + 6, so we can ensure that 

and (4.15) simplifies to 
6 = -c~ (4.19) 

k dk \ k 2 J '  # = 0 (4.20) 

822/52/'3-4-9 
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5. S O L U T I O N  OF T H E  E Q U A T I O N  

The function Gp depends implicitly on k as well as explicitly on p = up, 
so we can write it a s  G(up, k). Then, using (3.2) and (4.20), we can write 
(4.14) more explicitly as 

Ok k ) ]  _ k2G(u, k) -t 
02G(u, k) k22(k) 

~u 2 ( 1 -  k2 sin2 u) 1/2 (5.1) 

(exhibiting also the dependence of 2 on k). 
From (3.25), (3.44), and (4.13), we have the k = 1 boundary condition 

~, N + I - 2 j  . ( J - 1 / 2 ) r c - u  G(u, 1)  = - c o s  u ~ ~ - ~  c o t  
j=l  N 

(5.2) 

provided - 7r/2 < u < ~/2. 
We seek to solve these equations for G(u, k) and 2(k). From (3.26), 

(3.36), and (3.44), Vp and xp are periodic functions o fp  = up, of period n, so 

G(k, u + ~) = G(k, u) (5.3) 

Also, Vp and xp are unchanged by replacing Up by Us,, = - U p -  rt, so we can 
deduce that 

G(k, u) = G(k, - u - rr) = G(k, - u) (5.4) 

It follows that G(k, u) can be expanded in a Fourier series: 

G(k,u)=(2/zc){Go(k)+ 2 ~ ( -1)"Gn(k)  cos2nu} 
n = l  

Then (5.1) gives 

(5.5) 

d k--~Ikk'2 d G,,(k)]-(4n2 + k2) G,,(k)=k22(k) K,,(k ) (5.6) 

where, for n i> O, 

~,~/2 2nu du Kn(k ) = ( - 1 )n cos 
~o (1-k2s in2u)  m 

k2nf2(n+l /2)  ( 1 1 ) 
2 F ( 2 n + l )  F n + ~ , n + ~ ; 2 n + l ; k  2 (5.7) 

F(a, b; c; z) is the hypergeometric function. The first (integral) form applies 
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only for n integer; the second is more general and applies for n real, 
n > -1/2.  

If 2(k) is regarded as given, then (5.6) is an inhomogeneous singular 
second-order differential linear differential equation for G,(k). The 
solutions of the homogeneous equation (with 2 = 0) are K,(k) and K',(k), 
where 

1 kZn fo~- dO 
K'n(k) = ~ (1 -2k 'cosO+k '2)  "+1/2 

=-~nk2nF n + ~ , n + ~ ; 1 ; 1 - k  2 (5.8) 

They satisfy the Wronskian relation 

, dX. dK'n = (5.9) 
K'n'-~--  Kn ~ - 2 k ( 1 - k  2) 

and Ko, K~ are the usual elliptic integrals K. K'. 
It follows that the general solution of (5.6) is, fo rn  >/0, 

d.(k) = a.K.(k) + a'.K'.(k) 

+ - lEK'n(k) K n ( / ) -  Kn(k) K;( t ) ]  Kn(/) ,~(/) dl (5.10) 
7r 

where an, a'n are arbitrary parameters, independent of k. 

5.1. The Limit k - , 1  

First consider the low-temperature limit, when k ~ 1. From (5.2) and 
(5.5) 

lim G,,(k) = p,, (5.11) 
k ~ l  

where 

U l cot(~j/N) 
p n - =  j=l  4 j - - ~ - ~ +  1) 

(5.12) 

(If n = 0 and N is even, the j =  N/2 term should be replaced by the limiting 
value - n/4N.) 

We can in principle make standard low-temperature series expansions 
about the k = 1 case, expanding @pq in powers of k '2 = 1 - k 2, provided we 



656 Baxter 

restrict attention to the region - g/2 < up < Uq ~" g/2. It follows that gp, Xp, 
Gp c a n  be similarly expanded, and hence, from (5.1), so can 2(k). Thus, 
there is at least a formal series expansion: 

2 (k )=  ~ 2 ~ ( 1 - k 2 )  m (5.13) 
m=O 

[Note  that the Fourier coefficients G,(k) are not series expandable in this 
form: this is because the higher coefficients in the expansion of G(k, u) are 
not Fourier analyzable: they have poles at u = _+ g/2, which in turn is due 
to the singularity in v when sin u = k 1.] 

When k--* 1, for n ~> 0, 

K.(k) ~ - l n k ' ;  K'.(k) ~ ~/2 (5.14) 

and, from (5.13), 2(k) tends to finite limit. It follows that the integral in 
(5.10) is convergent at l =  1, and that, for n ~> 0, 

~.=0, a ' = 2 p . / ~  (5.15) 

5.2. The  Limit  k - * 0  

Now consider the self-dual case k--, 0, when we expect the system to 
be critical. Then vp = 0, 0p = ~bp = up/N, and the weights Wpq, V~Zpq depend 
on Up, Uq only via the difference Uq- up. From (2.13) it follows that gp/p is 
a constant (independent of p). From (4.4) and (4.13), kZGp, i.e., k2G(u, k) 
must therefore tend to a limit, independent of p or u. Hence k2G,(k) must 
tend to zero for n >~ 1, while from (4.14) we expect k42(k) to tend to a limit 
(actually zero). 

Now consider Eq. (5.10). When k--, 0, 

/ ) n \  
X.(k)~~2 4n 1~-n-)k2n ' n>.O 

K'~(k)~n 124n--2 k -2n, n>~l 

K; ( k ) ~ - l n k  

(5.16) 

For  n > 0, we can rewrite the integral of the first term in the integrand 
of (5.10) as the difference of two integrals: from l =  0 to 1, and from l =  0 to 
k. This decomposes k2(~n(k) into two terms, one of which is proportional 
to k2K'n(k), and hence does not tend to zero as k--, 0, while the other term 
does tend to zero. It follows that the first term cannot occur, i.e., the net 



Solvable Chiral Potts Model 657 

coefficient of k2K'n(k) must be zero. Using (5.15), this implies that, for 
n>~l, 

; s  lK~(l) 2(1) dl= - p .  (5.17) 

Equation (5.10), for n ~> 1, can then be written as 

d. (k)  = __~2 K'.(k) k lK~(l) 2(I) d l - -~  Kn(k) lK.(l) K'(l) ;t(l) dl 

(5.18) 

5.3. The Fu n c t ion  h(k) 

Remembering the implicit dependences on k, we have gone from 
functions of three variables (@pq,  I~pq) t o  functions of two (Up, Vp, Xp, yp, 
Gp = G(up, k)) ,  then to functions of one (~, fi, 6, 2, #). We are now at the 
deepest level of this sequence: we want to solve the linear integral equation 
(5.17) for 2(k). 

The following method is probably not the most elegant, but at least it 
demonstrates that there is a unique solution that is expandable in the form 
(5.13), and enables us to examine the critical k--* 0 behavior. 

Define, for m a nonnegative integer and n real, n > -1 /2 :  

f2 Zm~ = 4 lK2(l)(1 _ 12)m dl (5.19) 

Then in Appendix A we show that, for m >~ 1, 

Z0. = ~ ( j + n + l / 2 )  -3 
j = 0  

ZI,~ = ( 2n2 + 1/2) Zo. -- 1 

(m + 1 )3 Z,,, + l,n = (2m + 1 )(2/'/2 -4- m 2 + m + 1/2) Zmn - -  m3Zm - 1,n 

(5.20) 

For  n large, Zmn has an asymptotic expansion in powers of n 2: 

with leading coefficient 

Cmrn 2r 

r = m + l  
(5.21) 

Cm, m + 1 = (m!)4/E2(2m + 1)!] (5.22) 
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Substituting the series expansion (5.13) into (5.17), using (5.14), we 
get, for n ~> 1, 

Zm,,2,,, = - 4 p ,  (5.23) 
m = 0  

Equation (5.12) can be written, for n/> 1, as 

1 uv7,1 (N--  2j) cot(rcj /N)  
On = -~ 2.j= 1 4N2n2 - ( N -  2j) 2 (5.24) 

Clearly, Pn can be expanded in powers of n 2. Even though the series 
(5.21) is only an asymptotic one, it follows that both sides of (5.23) can be 
expanded in powers of n -2. Equating coefficients of rt - 2  gives a linear 
equation for 2o; the coefficient of n - 4  gives an equation for 2o and 21; that 
of n -6 gives 20, 21, 22; and so on. In this way we can in principle 
systematically calculate )~o, 21, )~2, ' . . ,  and hence the function 2(k). In 
particular, we get 

N - - 1  

2 o = N  z ~ ( 2 j - N )  cot(rcj /N)  (5.25) 
j = l  

In practice we can streamline this procedure. Consider the equation, 
true for n >~ 1, 

m =0 Zm,#,, -- n 2 _ a 2 (5.26) 

where a is fixed, lal < 1/2, and we want to solve for the #m. From (5.21), 
Zm, has an asymptotic expansion in inverse powers of n 2 -- a2: 

Zmn = ~ dmr(rl2 __ a 2) - r  (5.27) 
r = m + l  

so in terms of these coefficients dmr, (5.26) becomes, for r/> 1, 

r 1 

dmr~m=(~r, 1 (5.28) 
m=O 

Also, substituting (5.27) into (5.20), for m >~ 0 and r >~ 1, 

( m + l )  3 d m + l , r = ( 4 m + 2 ) d  .... + l + ( 2 m + l ) ( 2 a 2 + m 2 + r n + l / 2 ) d m r  

- m 3 d m -  1.~ (5.29) 

( t a k i n g d o l = l / 2 ,  d 1.r=O, a n d d m r = 0 i f r < , m ) .  



Solvable Chiral Potts Model 659 

Multiplying (5.29) by ftm/(2m + 1 ), summing over m, and using (5.28), 
we get, for r/> 1, 

r - - I  

E dmrv,~ = 0  (5.30) 
rrl=O 

where, for m >~ 0, 

m 3 (m + 1)3 
Vm = 2 m -  l lzm- l - (2aZ + m2 + m + l/2) Pm -~ 2 m + 3  #m+ ~ (5.31) 

(taking p_  1 finite). 
Now the only solution of (5.30) is 

Vm = O, m >1 0 (5.32) 

SO (5.31) is a recurrence relation for the p,~. From the r = 1 case of (5.28) it 
is readily seen that 

#o = 2 (5.33) 

so the/~,, are defined by (5.31)-(5.33). 
However, this recurrence relation is very like that for the Zmn" In fact it 

becomes precisely the same if in (5.31) we replace gm by (2m + 1 ) Zmn and a 
by n. If we extend the definitions (5.20) to real (positive or negative) values 
of n, then it follows that 

~ m  = (4m + 2) Zm, a - -  Z m , - - a  (5.34) 
Zo, a -- Zo,-a 

4m + 2 cos 3 rca 
rc 3 sin zca (Zm,~-)6~.-a) (5.35) 

From (5.24), - 4 p n  is a linear combination of t e rms  (rt 2 -  a 2) 1, where 
a = ( N - 2 j ) / 2 N .  Hence, 2,, is the same linear combination of the Pm 
obtained above: 

 m+1 1 { 
)~'n= ~3N-----T- 2 ( N - 2 j )  sin 2 (Xm,(N--2j)/2N--Zm,(2j--N)/2N) 

j = l  

Using (5.13) and (5.19), we get 

4 N ~ ~j 
2(k) = ~ Z ( U -  2j) sin 2 

j = l  

f~ 2 -  k 2 - t 2 + kZl 2 
x ~-~ 7 F _  k2/2)2 [K~y_2;)/2y(l)--K~2j_g)/2g(l)]ldl  

(5.36) 

(5.37) 
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The problem is now solved: 2(k) is given by (5.37); tin(k) by (5.10), 
(5.15), (5.18); Gp = G(k, up) by (5.5); and Xp by (4.13). Then yp is given, to 
within an additive multiple of k2/k '2, by (4.12); Apq, ~Jpq are given by 
(3.42)-(3.46), to within additive functions of b!q--blp only--these can be 
determined from (3.25). 

The resulting expressions can probably be simplified: some thoughts in 
this direction are offered in Appendix B. 

5.4. Ising Case ( N = 2 )  

When N =  2 the chiral Potts model reduces to the usual Ising model. 
In this case the above equations give 

p.  = ( - ~ / 8 )  a.,0, ;~(k)=0 

Gn(k) = ( -  1/4) X~(k) 6.,o 

G(K, u) = -(2re) -~ K~(k) (5.38) 

xp = -k2K~(k )/(27r cos vp) 

k f rcwp 
Yp-4rck,212~o(k) + Ko(k) d-~pln Ol(We ,k)}  

where 01(u, k) is the usual Jacobi elliptic theta function, and wp is given by 

sin Up = sn(wp, k), cos Up = cn(wp, k), cos vp = dn(wp, k) (5.39) 

I have verified that these results follow from Onsager's solution, (1) using 
Eq. (11.7.24) of ref. 2. 

This Wp is the "natural" rapidity variable, in the sense that the 
Boltzmann weights and free energies (for N =  2) are functions only of k and 
the difference wq-  wp. From (3.44), gp = -k2K;(k)wp/27r, so gp is propor- 
tional to this variable. Indeed, for any model with the difference property, 
this is a consequence of (2.13). This suggests that in some sense gp may 
always be a "natural" rapidity variable: it would be interesting to consider 
(for arbitrary N) the analyticity properties of Opq as a function of qp and gq 
for fixed k. 

6. C R I T I C A L  B E H A V I O R  

When k--* 0, the integral in (5.37) is dominated by the contribution 
from l small, and the sum by the j = 1 and N -  1 terms. Then, using the 
second form in (5.7), 

8r sin(2n/N) r '  I ~ ~ all 
2(k) 7rN Jo (k2 + 12) 2 (6.1) 
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where 

r = [ ( N -  2)/492N] tan(re/N) F4(1 /N) /F2 (2 /N)  

0 = 4 / N  

(6.2) 

(6.3) 

The integral in (5.38) can be extended to the interval 0 < l <  oo. Then 
from Eq. (3.194.6) of Ref. 13 we obtain 

2(k)  ~ - 4 N  2 ( N -  2) rk ~ 4 (6.4) 

Note that k42(k) does tend to a limit (namely zero) as k ~ 0, as expected. 
From (5.10) and (5.18), it follows that for n > 0 ,  as k ~ 0 ,  

7zr2 4~-1 / 2 n ,  ko+2n 2 
G , (k )  ~ (2Nn - N +  2) t-) (6.5) 

These results are true for N~>3. When N = 2 ,  r - 0 ,  and (6.5) is indeter- 
minate for n = 0: from (5.38) and (5.16) we then have (~o(k)~ (ln k)/4. 

Using (4.13) and (5.5), working to order k ~ in terms that are indepen- 
dent of Up, and to order k ~ + 2 in terms that do depend on up: 

r r kO + kO+2 xp= N - 2  ~ c o s  2up (6.6) 

From (4.20), working to order k2: 

ct(k) ~ ( - 2 r / N )  k ~ + ~qk 2 (6.7) 

where ~ is a constant of integration. It follows that Eqs. (4.12) are satisfied 
(to the relevant orders), provided yp is given to order k ~ by 

r 
y p = k 2 ( g + o q u p )  N2 4 k ~  (6.8) 

where e is another constant (independent of k and p). 
The constant e arises from the degree of freedom discussed in (4.16): it 

cancels out of (3.12), (3.16), (3.45), and (3.46), and so is of no interest. The 
constant cq can be determined from the rotation symmetry requirements 
(3.32) and (3.36). Using (3.44), they imply the exact relation 

Y R p -  Yp = ( N -  1 ) k2 / (Nk  '2) (6.9) 

Since YRp is obtained from yp by replacing up by up + ~t, we see that (6.8) is 
consistent with (6.9) provided 

~1-~ ( N -  1)/Nrc (6.10) 
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Substituting these results for Xp, yp into (3.45) and (3.46) and 
integrating, we get (to order k ~ 

N - 1  
A~q = J(Uq - u~) + ~ l~2(Uq - u~) cos(u~ + Uq) 

Nrk o + 2 
- ( N +  2)(N 2 - 4) sin(uq - Up) (6.11) 

The function J (uq-  Up) is independent of k, being the value of Apq 
when k = 0, i.e., at criticality. Our model then reduces to the self-dual ZN 
model of Fateev and Zamolodchikov, (~5'16) and we regain the "difference 
property" of previously solved models: the weights and free energies 
depend on Up and Uq only via Uq-Up. (There are other models, (17-a9) 
distinct from ours and having the difference property that also become the 
Fateev-Zamolodchikov model at criticality.) 

Fateev and Zamolodchikov obtained J(u) by the "inversion relation" 
method. In principle it should be possible to obtain it more rigorously from 
the above equations by integrating (3.45) all the way from k =  1 [where 
(3.25) and (3.42) give Apq] down to k = 0. I have not yet done this, so here 
I simply follow Fateev and Zamolodchikov. The method depends on the 
difference property: in particular, from (3.22) we have fpq=f(blq--Up), 
where 

In f (u)  = �89 In N -  [ ( N -  1)/N] ln[2 sin(u/2)] 

N--1  

+ N - '  Z j ln[2s in(u+nj ) /N]  (6.12) 
j = l  

The inversion relation (3.40) implies 

J(u) + J( - u) = 0 (6.13) 

while the rotation symmetry (3.30) implies 

J(u) -- In f (u)  = JOt - u) - In f(zt - u) (6.14) 

If we make the standard assumption (12) that r ~pq, Apq a r e  analytic 
in the vertical strip 0~< Re(uq-up)<~ re, apart from possible logarithmic 
branch point singularities at Uq- Up =0,  rc arising from the Boltzmann 
weights becoming infinite, then J(u) is analytic for 0~< Re(u)<  n, and it 
follows that 

J(u)= ln f ( u ) - l n ~  Wpq(1, 1) [YV'pq( l, 1)] 

fo 
~  ux sh(r~ - u)x  s h ( N -  1) n x  

- --~-~ch ~ ~ x c ~  dx (6 .15)  
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where Wpq(i, l), mpq(l, 1) are here evaluated from (3.1)-(3.8) with k = 0  
(and hence Op=~p=up/N), and with Uq-Up=U. (This u is the c~ of 
Ref. 15.) (The derivation parallels that of Section 5.1 of ref. 12. Note that I 
am using this nonrigorous "inversion relation method" only as a shortcut 
to calculating J(u). It is not the method used elsewhere in this paper.) 

The Boltzmann weights Wpq, Wpq can be expanded in powers of k 2, so 
k 2 plays the role in this model of the temperature deviation from criticality, 
T-T~, .  We note immediately from (6.11) that the dominant singular 
contribution to the free energy is proportional to k ~ If we make the 
standard convention that this is (To -  T) 2- ' ,  this ~ being the specific heat 
critical exponent, then we have 

= 1 - 0/2 = 1 - 2/N (6.16) 

which is the result (l.1). 

7. S U M M A R Y  

Apart from the number N of spin states, there are three parameters in 
the chiral Potts model; p, q, and k. In terms of p and k (we often let the k 
dependence be implicit) one can define related variables Up, Vp, 0p, ~bp, as in 
(3.1)-(3.3). 

The Boltzmann weight function ~ff'pq depends on these parameters only 
via two quantities: Oq-Op and Op-(~q. Similarly, ff/pq depends only on 
Oq-Op and ~q--~p. I have shown in this paper how these simple proper- 
ties, together with the star-triangle relation satisfied by the model, can be 
used to calculate the free energy. The solution is contained in Eq. (5.37) for 
2(k); (5.10) or (5.18) for 0n(k); (5.5) for Gp = G(up, k); (4.13) for xp; (4.12) 
for yp; (3.45) and (3.46) for Apq; (3.44) for gp, hp; (3.41) and (3.42) for the 
free energies j//(Sq) ,.pq , tppq, q~pq. The partition functions of the honeycomb, 
triangular, and square lattices are given by (2.11) and (2.16). In particular, 
in Section 6 these equations are used to obtain the critical behavior of the 
free energy, the value 1 - 2IN is found for the exponent c~. 

A key equation is (5.1). The homogeneous form of this equation (with 
2 = 0 )  is a linear partial differential equation for G(u, k). This equation 
separates, having solutions Kn(k) cos 2nu and K'n(k) cos 2nu. This has been 
an essential feature of this solution. 

More remains to be done: one would hope that the result (5.37) for 
2(k) and the consequent results for the other functions can be simplified. In 
Appendix B a few thoughts in this direction are put forward. 

This lengthy calculation has been motivated by the fact that the chiral 
Ports model appears to provide a quite new solution of the star-triangle or 
Yang-Baxter relation: one in which the usual difference property 
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( Wpq, [ff/pq depending only on p - q and k) is absent. In previouSly solved 
planar models, notably the Ising, (1) eight-vertex, (1~ and hard-hexagon (14) 
models, this difference property has led naturally to the use of Jacobi 
elliptic functions and to an interesting collaboration between physics and 
mathematics. It seems likely that this new solution (which includes the 
Ising model as a special case) will extend this interaction. 

A P P E N D I X  A 

Here I establish the relations (5.20) for the integrals (5.19). I generalize 
the problem and define, for m a nonnegative integer and - 1  < c -  
a - b < l , c > O ,  

r ( a )  F(b)  F(c - a) F(c - b) sin ~(a + b - c) 
Ira(a, b, c)= r2(c ) 

x ( 1 - - x ) m x  c 1F(a,b;c;x) F ( c - a , c - b ; c ; x ) d x  (A1) 

F(a, b; c; x) is the hypergeometric function (Section 9.100 of ref. 13), 

r(c) ~ r(a + j) r(b + j) xJ 
F(a 'b ;c ;x ) -F(a)F(b) j~=o F ( c + j ) j !  (A2) 

Also, from w of ref. 13: 

F(c - a, c - b; c; x) 

F(c) F(a + b - C )  F ( c - a ,  c - b ;  c - a - b +  1; l - x )  
r(a) r(b) 

+ ( l - x )  a+b cF(c) F ( c - a - b  ) F(a, b; a + b - c  + l ; 1 - x )  
F ( c - a )  F ( c - b )  

(A3) 

Now use the general formula (A2) to expand the rhs of (A3) in powers of 
1 - x .  Substitute the result, for F ( c -  a, c -  b; c; x) only, into (A1). We get a 
weighted sum of integrals 

f ] (1  - -x)  p-1 xC-lF(a, b; c; x) dx (A4) 

where p > 0 ,  c + p - - a - b > O .  From w of ref. 13, (A4) is equal to 

F(c) F(p) F(c + p - a - b) 
(A5) 

F(c + p - a) F(e + p -- b) 
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Using also the identity F(1 - p )  F(p) = ~ cosec ~p, we thus obtain 

I,~(a, b, c)= 
(j+m)! 

j=0 J!  

F ( c - a + j ) F ( c - b + j ) F ( c - a - b + j + m + t )  
x F ( c - a + j + m + l ) F ( c - b + j + m + l ) F ( c - a - b + j + l )  
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F(a+ j) F(b+ j) F ( a + b - c +  j + m +  1) 

V(a+ j + m  + 1) F(b+ j + m +  1) V ( a + b - c  + j+  1) 
(A6) 

In particular, for m = 0, 

Io(a,b,c)= ~ { 1 _ _  1 } (A7) 
j=o ( c - a + j ) ( c - b + j )  (a+j)(b+j)  

For m = 1, 2, 3 ..... the summand in (A6) is still a rational function 
of j, though it becomes progressively more complicated. Making a partial 
fraction decomposition of the summand, I,~(a, b, c) can in principle be 
expressed as a weighted sum of Euler psi functions (using w of 
Ref. 13). Proceeding in this way, we have obtained the relations 

(1 - a - b ) c  +a2 + b 2 -  1 2(a+ b - c )  
I i (a ,b ,c)-  ( a _ b ) 2  t lo(a,b,c)q ( a _ b ) 2  1 (A8) 

2 m + 1  ( 1 - a - b ) c + a 2 + b 2 - 1 - m - m  2 
I . , +  i(a,  b, c ) =  - -  

m+ 1 (a -b )  2 -  (m+ 1) 2 Ira(a, b, c) 

mira 2-  (c -  a -  b) 2] 
+ (m+l)[(a_b)2 (m+l)2]Im l(a,b,c) (A9) 

From (5.7), (5.19), and (A1), 

7~ 

Zmn -- 2 sin n(a + b - c) l,,(a, b, c) (A10) 

evaluated in the limit when a, b, and c become n + 1/2, n + i/2, and 2n + 1, 
respectively. Dividing (A7)-(A9) by 2(a + b -  c) and taking this limit, we 
obtain the desired formulas (5.20). 

APPENDIX B 

Equation (5.1), or equivalently (4.14), is a linear partial differential 
equation for G(u, k). It is a corollary, via (4.13), of the pair of (4.12) of 
pde's for Xp, yp. Once these functions are known, gp, hp, Apq, @q, and ~pq 
are given by (3.41)-(3.46), to within appropriate integration "constants." 
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All these equations are linear. It is natural to regard the right-hand 
sides of (5.1), (4.14), and (4.12), involving e, fl, 6, and 2, as "forcing terms," 
and to start by considering the homogeneous equations obtained by 
replacing e, fl, 6, and 2 by zero. 

Here I show that these homogeneous equations have a simple set of 
solutions. In the course of deriving (5.1), I noted that the homogeneous 
equation has the solution G(u, k) = sec v = (1 - k 2 cos 2 u) 1/2. However, 
the lhs of (5.1) is translation-invariant under u ~ u - ~ ,  where ~ is a 
constant (independent of both u and k). Defining 

u ' = u - ~ ,  s inv '=ksinu ' ,  cosv '=(1-k2s in2u ' )  m (B1) 

(so v' is a function of u and k), it follows that a solution of t h e  
homogeneous equation (5.1) is 

G(u, k) = sin i/cos v' (B2) 

t ! r Ut Writing Up, Vp for the values of u,  when u is replaced by Up, we 
immediately obtain from (4.13) 

Xp = k 2 sin ~/(cos vp cos Vp) (B3) 

Then both the homogeneous equations (4.12) are satisfied by 

t t2 yp = kZ(cos up cos Up + k sin up sin Up)/(k '2 cos Up cos Vp) (B4) 

and (3.45) and (3.46) by 

J'sin U'q cos Vp + sin up cos V'q 
Apq In 

tsin Up cos Vq + sin Uq cos Up 

, ,q COS Uq COS Up + COS ~/p COS V 
• , ~ ( B 5 )  

COS Up COS Uq At- COS Uq COS U p 3  

The equations are linear, so any linear combination of the forms (B3)- 
(B5) (with different values of 4) is also a solution. For the N =  2 Ising case, 
~, fl, 6, and 2 are indeed zero, and the result (5.39) for Xp can be written as 

k 2 / ' ~  da  

J (B6) 
x~ = 4~ COS Up - ~  (1 q- k 2 sinh 2 a)1/2 

For a given value of u between - ~ / 2  and ~/2, change the contour of 
integration to the line Im(:O = U; then change the variable to ~, where a = 
i (u-4);  so ~ is pure imaginary. We get 

xp = (i/4r0 [k2/(cos vp cos v~)] d~ (B7) 
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It follows at once that  the Ising model  result for Apq is obtained from (B5) 
by multiplying by i/4r~ sin ~ and integrating with respect to ~ from - i oo to 
i c~. [Except  for an additive term that  depends on k, up, and Uq only via 
Uq-Up:  we have noted before that such terms cancel out  of (3.45) and 
(3.46), but  can be determined from the low-temperature  k = 1 limit.] 

It seems likely that  the general homogeneous  solution of  (5.1), (4.12), 
(3.45), and (3.46) can be expressed as a linear combina t ion  of  (B3)-(B5).  

For  N >~ 3, the functions ~, fl, 6, and 2 are not  all zero. Even so, it may  
be possible to extend these ideas to the inhomogeneous  equations, and 
thereby obtain a more  t ransparent  and explicit solution for the free energy 
of the chiral Pot ts  model. 
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