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Free Energy of the Solvable Chiral Potts Model

R. J. Baxter!
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Very recently, it has been shown that there are chiral N-state Potts models in
statistical mechanics that satisfy the star-triangle relation. Here it is shown that
the relation implies that the free energy (and its derivatives) satisfies certain
functional relations. These can be used to obtain the free energy: in particular,
we expand about the critical case and find that the exponent « is 1 —2/N.
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1. INTRODUCTION

The star-triangle (or Yang-Baxter) relation and its generalizations play a
central role in the theory of exactly solvable models in statistical
mechanics. ) Very recently, ®’ solutions of this relation have been found
for a restricted class of N-state chiral Potts models. (I shall call models
“solvable” if they belong to this class.) Unlike the previous solutions for
other models, they do not have the “difference property,” where the
Boltzmann weights of a vertex can be expressed as a function of the
difference of the “rapidities” of the two lines through that vertex.

For the other models, this difference property makes it straightforward
to obtain the free energy from the inversion relation (or unitarity
condition)®%" and to obtain single-spin expectation values (e.g., the Ising
model magnetization) by using the corner transfer matrix technique.®®
Without it, it is not clear how best to proceed.

Here I adapt the “399th” method used for the Ising model (§11.7 of
ref. 2; ref. 9). I show that the star-triangle relation implies certain functional
relations for the free energy and correlations of the solvable chiral Potts
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model and that these can be solved. In particular, I expand about the
critical case, obtaining the result

a=1-2/N (1.1)
for the critical exponent a.

2. GENERAL Z-INVARIANT MODEL

First consider a very general Z-invariant model.'®'" One has a collec-
tion of straight lines in the plane, line j carrying a rapidity variable p;.
These lines form a graph ¥4, spins live on alternate faces of ¢4, and two
spins are adjacent if their faces touch at a vertex of ¥. Each spin ¢ takes the
values 1,.., N. Two adjacent spins a and b contribute to the partition
function Z a weight W, (a, b) if they are arranged as in Fig. 1a (in which
case we call them a W-pair) and a weight W, (a, b) if arranged as in
Fig. 1b (a W-pair). The p and g are the rapidities of the two intervening
lines; W, (b, a) is not necessarily equal to W, (a, b). Thus,

Z=3 [] W,l0: 0, (2.1)
{e} <4
where the sum is over all values of all the spins ¢, 0,,..; the product is
over all adjacent pairs (i, j) of spins ¢, g;. For each pair or “edge,” o, and
o; must be ordered as are ¢ and b in Fig. 1 (p and ¢ being the intervening
line rapidities), and W,, must be replaced by W,,, as they are a W-pair.
A model is “Z—invarlant if W, W satisfy the star-triangle relation:

Z Wb, d) W, (a, d) W,,(d, ¢) = R,y W,oi(a, b) W, (b, ¢) W, (ac) (22)
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Fig. 1. The two Boltzmann weights depending on the orientation of the spin pair with
respect to the rapidity lines p and q.



Solvable Chiral Potts Model 641

which can be represented graphically as in Fig. 2 of ref. 5. (A more sym-
metric form of the equation can be obtained by reversing the direction of
line 4.)

2.1. Expectation Values

I begin with some general comments that apply to any model
satisfying (2.2), e.g., the Ising, self-dual Ashkin-Teller (which is equivalent
to the eight-vertex model), or critical Potts model.>'" The product in (2.1)
is a function of o¢,, 0,,.: write it as P{c}. Let F(a, b) be an arbitrary
function of two adjacent spins a and b (and other parameters): then its
expectation value on an edge (i, j), with weight function W, (c,, 0,), is

(F|W,>=Z 'Y Flo,0,)P{c} (2.3)
{o}

On an edge with weight function W, (o,, 6;), its expectation value is
still given by (2.3), but is written as (F| W, >. A vital property of a Z-in-
variant model is that in the large-lattice limit, {F' | W,,> and <F|W, >
depend on the rapidities p and ¢ of the two lines between spins ¢, and ¢,
but not on the rapidities of any other lines.**!")

Derivatives of In Z can be expressed as sums-over-edges of particular
expectation values, notably

15}
Apy= <a_p- In W,

qu>’ B,,= <£1n W
(2.4)

_ 5, —
Ap= <% Inw,

_ — d -
qu>’ qu: <5§ In qu

For all the models mentioned above except the critical Potts model, the
weights W,,, W, of all edges also depend on a single “universal” modulus
k, so for these we also need

d
Cpy= <—8; InW,,

~ N
qu>, C,,q=<5€-1n w,, qu> (2.5)

These functions 4,,,.., C,, depend only on the rapidities p and ¢ (and
possibly the modulus k): they are the same for any lattice.

2.2. Honeycomb and Triangular Lattices

Now take ¥ to be the Kagomé lattice. The spins form either the
honeycomb or the triangular lattice, depending on which set of alternating
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faces of ¥ they occupy (Chapter 11 of ref 2). Give parallel lines equal
rapidity, so there are three distinct rapidities p, ¢, and r, as in Fig. 2 of
ref. 5. Let the honeycomb (triangular) lattice have 2L (L) sites, and let
Zy(p,q,r) [Z4(p, g, r)] be its partition function. Then from (2.2)

Zu(p.q.1)=Ry,Z1(p, g, 1) (26)

The honeycomb (triangular) lattice has L edges with weight function W,
(W,), L with W, (W,), and L with W, (W,). Differentiating
In Z4(p, q, r), using (2.1) and (2.4), we obtain

0 _
L‘lganH(p, g, 1)=A,+A4,,

0 - —
L"la—qanH(p, q,r)=4,+B,, (2.7)

0 —
L~151n ZH(ps q, r)=qu+Bpr

I emphasize that any rapidity dependence is here shown explicitly: e.g., 4,,
is independent of g.
It follows from (2.7) that

A,==—2B8 (2.8)

_ 0 = .
Ay = —ap lqu’ B,,= _aq ¥ pq (29)
Similarly, 3, such that
d 0
=3 Voo  Bpy= ~ %4 Vg (2.10)

It follows immediately from (2.7) that L' In Z(p, ¢, )+ V¥ + ¥ pr + ¥ g
is a “constant” (i.e., independent of p, ¢, and r). A similar argument (with
barred and unbarred variables interchanged) applies for the triangular
lattice. The two constants can be absorbed into v,, and ¥,, (which are
then defined uniquely), giving

l,A1 ln ZH(P, q, r)= —lpq,_d/pr_lppq

(2.11)
L' InZAp,gr)=—Y,—V,—¥,



Solvable Chiral Potts Model 643

From (2.6), it follows that

Ry = fog forlfor (2.12)

where
Inf, =V~ Vot 8 — &4 (2.13)

where g, is an arbitrary function. This verifies the conjecture (12) of ref. 5.
We can think of ,,, ¥, as free energies per edge (one for each edge
type). Usually, if we can solve the star-triangle relation (2.2), then we know
the factor R,,,, and hence f,,. Then (2.13) is a relation between the two
free energies.
In all the models, we can ensure that

gr

W (a,b)=1,  lim W,(a b)/W,(0,0)=4,, (2.14)

q—=>p

Taking p = g =r, the honeycomb and triangular models become trivial, and
from (2.11) we find

V,,=0,  lim [§,,+In #,,0,0)]=0 (2.15)

q=>p

2.3. Square Lattice

If we let r — ¢ in the honeycomb and triangular models, the W, edges
disappear, while W, edges contract to a point. Both models then reduce to
the square-lattice chiral Potts model of L sites, with weight functions W,
and W,, on horizontal and vertical edges, respectively. Hence, using (2.15),
the square lattice partition function is given by

LAlln ZSq(p’ 41)= —'lppq—!ppq (216)

2.4. k-Derivatives

If the model also has a variable modulus & on which the weights,
expectations values, and free energies implicitly depend, then differentiating
the partition functions, using (2.11), gives

0
Cog= Tk lppq“*"hp"’hq

5 (2.17)
Cpq: -5'/; ‘ppq+hq—'hp

where the function 4, is yet to be determined.
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To summarize: ¥ ,, and ¥, are uniquely defined by (2.9)-(2.11) and
can be regarded as “edge free energies.” Their difference is given by (2.13),
and their derivatives (2.9), (2.10), and (2.17) yield the Z-invariant edge-
expectation functions 4,,,..., C,, The single-rapidity functions g, and 4,
also have to be determined from these equations. All these functions may
depend implicitly on the elliptic modulus & (and on any other “universal”
variables, e.g., the four-spin coupling in the eight-vertex/Ashkin-Telier
model ).

If one has some further information, notably linear relations between
A4,,, B, C,, (and 4,,, B,,, C,,), then it may be possible to solve the
system of equations for ¥, ¥ ,,. Basically this is the method used in ref. 9
to solve the Ising model. Here we adapt it to the chiral Potts model.

3. CHIRAL POTTS MODEL: EQUATIONS FOR w,,. ¥,

Now we specialize to the chiral Potts model. The functions W,,, W,
are defined in ref. 5. Here it is convenient to work not with the a d

A
therein, but with variables 0, ¢,, u,, v, defined by

6y, _ ,—mi/N ity
er=e b,jc,, e'=a,ld,

(3.1)
up:N(9p+¢p)/2’ Up:N(gp—¢p)/2
From Eq. (9) of ref. 5
sinv,=ksinu
g g (3.2)

cos v, = (1 —k?sin® u,)*?

Hence if k is given, then any one of 6, ¢,, u,, v, specifies the other three.
They are all functions of the rapidity p, which we can choose to be u,, ie.,

U,=p (3.3)

]

We shall need two functions:

s, =0v,/0k =sin u,/cos v,

(3.4)
t,=0v,/0p=kcosu,/cosv,
We shall usually take &, u,, v, to be real, with
O<k<l, —m2<v,<m/2 (3.5)

Define a function 7(6; n), for integer n, by

T(0;n) NO\~—WN n 0 7t(2j—1)]_ N1 .
T(e;o)_<c°57> 1 Sm[ oy L Tem=1
(3.6)
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Then the Boltzmann weight functions of the chiral Potts model are
Wola,by=T(0,~¢,;a—b)/T(0,—¢,;a—b)

37
W, (a, b)=T(¢p—¢q+%;a—b>/T(9q—ep—%;a—b> G1)

They (and the constituent T factors) are positive if 0 <u,—u,<n [this
follows from (3.33)7]; they are periodic functions of a — b with period N and
are normalized so that

N-—1 N-—1
[T W, b+nb)y= ] W, (b+nb)=1 (38)
n=0 n=0

They satisfy the constraints (2.14).

Obviously W, (a, b) depends on p, g, and k only via 0,—¢, and
0,-¢,,ie, via u,—u, and v, +v,. If we temporarily regard W, (a, b) as a
function of u,—u,, v,+v,, and v,—v, (instead of p, ¢, and k), then its
derivative with respect to v, — v, vanishes. Returning to the variables p, g,
and k, this implies

iopq qu(a, h)=0 (3.9)
where
o 0 0
g;qz(spﬁ-sq) (é;+5(;>_(tp+tq)5/—c (310)

Hence, using (4), <&, In W, | W, >=<0| W,,>=0. On the other
hand, from (2.4) and (2.5), and (2.9), (2.10), and (2.17):

(&, In Wl W)= (Sp +Sq)(qu +B,,)— (1, +1,) Cpq

=~y — (1, + 1)k, h) (3.11)
S0
LW py=(t,+1,)(h,—h,) (3.12)
Similarly, W,,(a, b) depends only on u,—u, and v,—v,, so its
derivative with respect to v, + v, vanishes, giving
L, Wo(a, b)=0 (3.13)

where

_ o 0 9
esﬂ,,q:(s,,—sq)(é?u—a;)—(zp—zq)% (3.14)
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This leads to

FoWpg=(tg—=1,)(h,— h,) (3.15)
Eliminating ¥, between (2.13) and (3.15),
ZoWpg—10 [y + 8, — 8,)=(1,—1,)(h,— h,) (3.16)

The rest of this paper is concerned with solving the two equations (3.12)
and (3.16) for g,, h,, and ¥ ,.

3.1. Consistency Condition

In terms of variables u,—u,, v,—v,, and v,+v,, the operators £,

and %,, are the derivatives with respect to v, — v, and v, +v,, respectively,
multiplied on the left by

2(s,t,—s,t,) =2k sin(u, —u,)/(cos v, cos v,)
Defining a function
o=k ' cosv,cosv, (3.17)

it follows (because of the general mathematical relation 0%/0x dy =
0°/dy éx) that %, and %, satisfy the commutation relation

qupqy "(iqypq"g’ppq (3.18)
This can be verified directly.
Multiplying (3.12) on the left by Z,.y,,, (3.16) by %,,,,, and sub-

tracting, it follows that the single-rapidity functions g, and /4, must satisfy
the consistency condition:

‘Zwypq(tp + tq)(hp - hq)
= pqypq{(tq - tp)(hp - hq) + Zq(lnqu_ &gy + gq)} (3~19)

3.2. The function f,,

We need to know f,, (or at least %, In f,,). This is given in Eq. (13)
of ref. 5. Unfortunately, this equation is only a conjecture, but it has been
stringently tested numerically, is correct for the k=0 and N =2 cases, and
has the right symmetry properties. It would be amazing if it were wrong.

Equation (13) of ref. 5 can be simplified by noting that the numerator
is the Nth root of the determinant of an N by N matrix with elements
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M,, =W, (a, b). This matrix depends on the variables p and ¢ (and k), so
we can write it as M,,,. Then it satisfies the inversion relation

M, M, =S5,T {3.20)
where

_ysing—u) (o N0, =8,) o Nlg =g
S”"‘Nsin[(uq_up)/N] {451“ I (3.21)

Because of the normalization (3.8), the denominator in Eq. (13) of ref. 5
is unity. It follows that f,, f,,=S,,. Noting that the elements of M, are
rational functions of exp[i(6,—0,)] and exp[i(¢,—¢,)], one can go on to
establish that

=detM,,

NN/ZHN L A2 sin[(u, —u, + 7)) )N}
{4s1n[N(9 —8,)/2] sin[N(g,— ¢,)/2] } ¥~ 17

(3.22)

Thus f,, depends on p, ¢, and k only via u,—u, and v,—v,. It follows at
once that

ZLyInf,,=0 (3.23)

Indeed, this property follows at once from (3.13), provided one simply
notes that f,, depends on p, ¢, and k only via qu\a b). Tt is the main
property of f,, that we shall use herein.

3.3. Low-Temperature Limit: k-1

One can easily see that (3.12) and (3.16) are unchanged by adding to
Y, an arbitrary function of u, —u, only. To fix y,,, we therefore need an
extra piece of information, and this can be obtained by looking at a
“low-temperature”-type limit, where k — 1, while u,, u, remain fixed, in the
range —mn/2<u,, u,<n/2. Then ¢,, ¢,—0 and ~—7z/N<6 0,<n/N;
InW,(a, b) tends to a fmite limit, with W,(0,0)> W, (a, b) while

W pal@, )/ W, (0, 0) > 6.,
The system is then ordered with all spins equal, so

Y, =—In W, (0,0), Yoo+ W, (0,0)=9,, +1Inf, =0 (324)
Hence, using (3.7),

'ﬁpq:gq_gp (3.25a)
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where

NN+1-2 . (J—=12)n—u
g,=y ——=1In {2 sm—p} (3.25b)
LN N

We see at once that (2.13) is satisfied, so g, therein is given by (3.25b),
provided k=1 and —n/2 <u,<n/2.

3.4. Symmetries

In ref. 5 it was remarked that the model has a rotation symmetry: p,
g—¢q, Rp, and a reflection symmetry: p, 4 - Sq, Sp. In terms of our
variables, Rp and Sp are defined by

HRp:¢p+n/Na ¢Rp=9p+n/N7

Up,=U,+ T, Urp= —U, (3.26)
Bsz —¢p—72:/N, ¢Sp= _Hp_n/N

u5p= —up—n, USp:Up

(Thus, Rp=p+mn, Sp= —p—mn.) Then

W rpla, b)=W,,(a, b), W rpla, b) =W, (b, a) (3.27)

WSq,Sp(a’ b) = Wp,q(a9 b), WSq,Sp(aa b) = Wp,q(bs a) (328)
It follows that

=B

rq>

Aq,Rp
As,sp=—B

pq?

(3.29)

BSq, Sp = _qu’ CSq, Sp = Cpq

and similarly with barred and unbarred variables interchanged. Also,
replacing p, g, and r by ¢, r, and Rp (and by Sr, Sg, and Sp) leaves the
honeycomb and triangular lattices unchanged, apart from a rotation
(reflection). From (2.9)}-(2.11) and (2.17), we get

lpq,RBZl»pznl'+‘77’ 'pq,Rp:l/qu'—r’

) B (3.30)

Wsgsp= lppq’ Y sq.50=Ypq
hg,—h,=dn/dk (3.31)
hs,+h,={ (3.32)

where n =n(k), {={(k) are functions only of k.
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From (3.1) and (3.2), we can establish the rather remarkable identity

4sin[ N(B,—6,)/2] sin[N(¢,— ¢,)/2] cos[N(0,—¢,)/2]
x cos[N(¢,—0,)/2]=k'"*sin’(u,—u,) (3.33)

where
k'=(1-k*)? (3.34)
is the conjugate modulus of £. Using this and (3.22), we find
Tog forp=Nlk'" =N (3.35)
and fs, s, = /5, From (2.13) and (3.30), it follows that

ng—gp=2n—1nN+N_11nk’ (336)
Espt 8,=71
where 7 =1{k) is a function only of .
3.5. Inversion Relation
Another symmetry is provided by (3.20), together with
Wo(a, b) W, (a b)=1 (3.37)

This implies that if we consider a transfer matrix going in the direction of
the W edges, for both the honey comb and triangular lattices this matrix is
inverted by interchanging p with r (apart from scalar factors involving S,,,
S, S,,)- This negates the free energy, so from (2.11) we get

lpqr+l//pr+lppq+‘pqp+¢rp+'/;rq: —ln(Spqur) (338)
lpqr_f—l/;pr'i_lnbpq-f-Ipqr-g-!//pr-f—‘ppqz —~In Spr (339)
From these equations, together with S,,=S,,, we can deduce that

Vgt ¥y =0
l/}pq + '/;qp =-nS,,=-Inf,f,
These reiations are consistent with (2.13).

For the eight-vertex and other previously solved models, v ,, is a
function only of p—g, and there is the very direct “inversion relation

(3.40)
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method” for obtaining ,, immediately from (3.40)."'* However, this
method does require an assumption that y,, be analytic in a particular
complex domain. Here I use this method only to obtain the isolated k=0
result (6.15) (previously obtained by Fateev and Zamolodchikov), ' and
in principle one can avoid doing even this. For nonzero & I emphasize that
here I do not use this method, and do mot make such an analyticity
assumption (partly because sufficient understanding is lacking to be able to
do so with any confidence). My only assumptions (some of which can
probably be easily proved) are:

Local differentiability for u,, u,, k real, 0 <u,—u,<n, O<k<1.

2. For —n/2<u,<u,<mn/2, that 4,,.., C,, are Taylor-expandable
in powers of k’*=1—k? (this fits with series expansions and the
N =2 Ising case).

3. Thaty,, 4 C,, tend to finite limits as k — 0.

P

3.6. Derivatives of the Square Lattice Free Energy

From (2.16), the free energy per site of the square lattice is
PSP =, + Vo =20,0+ g, — 8,10 1, (3.41)

Let us define, as functions of p, ¢, and %,

qu=l//§,§1q)+lnqu=21//pq+gp—gq (3.42)
Cpq = COS U, €OS U, — k'* sin u,, sin u, (3.43)
x,=0g,/0p, y,=2kh,—k 0g,/0k (3.44)

Then from (3.10), (3.12), (3.14), (3.16), and (3.23) it follows that

6qu _ Sin(ul’ + ull) (Xq - xp) + cpq(yq - yp)

= 45

ok kcosv,cos v, (345)

_59__'_2 q=cpq(xq—xp)—k’2 sin(u, +u,) (y,— ¥,) (3.46)
dp o0q) " oS v, COS v,

Thus if we know the single-rapidity functions x,, y,, then we can obtain
4, by integrating either (3.45) or (3.46). The consistency condition (3.19)
ensures that both ways can give the same result.

In the next two sections I show that this condition defines x,, y, (to

within additive terms independent of p).
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4. EQUATIONS FOR x,,. v,
Define

17 0 0
_ (9. 9\ _, 9 41
% S”<ap+aq) “ o b
Then from (3.10) and (3.14),
%q:%+gq’ Zqzzvﬂgq (4.2)

while from (3.18) %,y,,%,= %,7,,%,- Using (3.23), it follows that (3.19)
can be written as

D,,+D,=0 (4.3)
where

Dy =215 2t h,+ 2, 85— L1200, + 2, 8,) (4.4)

From now on we shall find it convenient to work with the functions
x,, ¥, defined by (3.44), rather than with g,, #,. Using (3.4) and (3.17), we
can write (4.4) as

D,, =%,k 'cosv, (x,sinu,+ y,cosu,)]

— L[k~ cosv, (x,sinu,+ y,cos u,)] (4.5)

Define two auxiliary functions

. 0x, oy
¢ =—Fy ff? LR
X, pr + 7 2y,
{4.6)
. ﬁ_yg _x 0x,
Yo = T ok
Then, on expanding (4.5), using {3.4) and (3.2), we find that
D,,=sin(u,—u,)E,,/(k cos v, cos v,) (4.7

where

E,, = %,sin{u,+ u,) + 2x, cos(u, + u,)

+ J,(cos u, cos u,—k'*sin u,, sin u,) (4.8)
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If we now define

X,=%x,sinu,+(2x,+ y,) cos u,, (49)
Y,=%,cos u,— (2x,+k'*p,)sinu,

then
E,,=X,cosu,+Y,sinu, (4.10)

The consistency condition (4.2) is equivalent to E,,=E,, for all p, g.
From (4.10) it follows that there are only two independent linear com-
binations of the functions X,, Y,, cos u,, sin u,. Hence there must exist
parameters «, f, ¢ (independent of p, but still implicitly dependent on k)
such that

X,=acosu,+ fsinu,, Y,=pcosu,+dsinu, (4.11)

[The equality of the two parameters § is a consequence of (4.10).]
Solving (4.9) and (4.11) for x,, ,, then using (4.6), we get

oy, ox, 2 -
2xp+<5—k—a;€— cos“ v, =a— (o +0d)sin”u, (4.12a)
. 0x Y
—k?x, sin 2u, + (6—pp—+ kk'? E]-f- 2yp> cos’ v,
=%(k’2a+5)sin 2u,+ fcos’v, (4.12b)

This is a pair of coupled linear partial differential equations for x,, y,. We
can eliminate y, by dividing (4.12b) by cos® v, differentiating with respect
to p, and using (4.12a). The result simplifies considerably if we introduce a
function G, by

x,=k*G ,/cos v, (4.13)
Then we obtain
0 oG 0’G, Kk*(A+ pcos2u,)
k—{kk? =L}~ k? £ — L4 .
ak< 6k> G,+ 5 o (4.14)
where
_a—k? kK d

=2t 00 F 2 sy __kd klz( +8)] (415
T @ S Y el U A B AS)
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Choice of Arbitrary Parameters

The equations (4.12) are homogeneous and linear in the unknown
functions x,, y,, o, f, 4. They admit two particularly simple solutions:
Case (i)

X,=a=0=0
¥, =independent of p (4.16)
B =kk' ‘Zyk” =2y,
Casef(ii)
yp=B=0
x, = independent of p (4.17)

o=2x,—kdx,/dk
d= —2x,+kk'> dx,/dk

We are therefore free to add such solutions, provided we leave
unchanged (as we can) the k =1 boundary condition (3.25) and the k— 0
finiteness requirements.

From (3.44), adding a solution of type (i) merely increments g, and 4,
by terms independent of p. This has no effect on (2.13), (3.12), or (3.16),
and so it does not change the free energies ¥, ¥,,. It does change f, so
we can use this freedom to ensure that

B=0 (4.18)

Adding a solution of type (ii) increments x, by some arbitrary
function ¢(k) (independent of p). This induces increments pg(k) and
p#'(k)/2 in g, and h, and causes both ¥, and —y,, to be incremented by
(g— p) #(k)/2. This affects (in a trivial way) the expressions (2.9) and
(2.10) for the expectation values A,,,.., B,,. However, it does not change
the expressions (2.11) and (2.16) for the free energies of the honeycomb,
triangular, and square lattices; nor does it change (3.45) or (3.46). Thus, if
we only consider these total free energies, we are free to add a solution of
type (ii). This will change « + 8, so we can ensure that

0= —a (4.19)
and (4.15) simplifies to

I k/
A= —/f—i<—3>, ©=0 (4.20)

822/52/3-4-9
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5. SOLUTION OF THE EQUATION

The function G, depends implicitly on k as well as explicitly on p=u,,
so we can write it as G(u,, k). Then, using (3.2) and (4.20), we can write
(4.14) more explicitly as

0 [ 2 06U k)] Gk 0w R) ) 51)

ou? (1 —k?*sin? u)'?

* % ak
(exhibiting also the dependence of A on k).
From (3.25), (3.44), and (4.13), we have the £ =1 boundary condition

N e 1 _
G(u, 1)= —cosu Y, N+]$2 2Jcot (U /;)n !

j=1

(5.2)

provided —n/2 <u<mn/2.
We seek to solve these equations for G(u, k) and A(k). From (3.26),
(3.36), and (3.44), v, and x, are periodic functions of p = u,, of period =, so

Gk, u+n)=G(k, u) (5.3)

Also, v, and x,, are unchanged by replacing u, by u,, = —u, —, so we can
deduce that

Glk,u) =Gk, —u—n)=G(k, —u) (5.4)

It follows that G(k, u) can be expanded in a Fourier series:
Gk, u)=(2/n) {Go(k) +2 Y (=1)"G,(k)cos 2nu} (5.5)
n=1

Then (5.1) gives

d 12 d A 2 2y A __ -2
kglg[kk %Gn(k)}—mn +k?) G, (k) =K*ik) K, (k) (5.6)

where, for n =0,

w2 cos 2nu du
Kil)= (=1 | g

K" T(n+1)2) (

R
== - —2n+1;k2 5.7
2 Tantl)  \taantgient ) (37)

2 2

F(a, b; c; z) is the hypergeometric function. The first (integral) form applies
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only for n integer; the second is more general and applies for n real,
n> —1/2.

If A(k) is regarded as given, then (5.6) is an inhomogeneous singular
second-order differential linear differential equation for G,(k). The
solutions of the homogeneous equation (with 2=0) are K, (k) and K, (k),
where

1 n do
Kik)y==k*
(k) 2 jo (1 —2k"cos @+ k2" 12
1 1 1
:Enkz”F<n+§,n+§,l,l—k2) (58)
They satisfy the Wronskian relation
L dK, K, T

"dk " dk 2k(1—K2) (39)

and K,, K; are the usual elliptic integrals K. X'.
It follows that the general solution of (5.6) is, for n =0,

G (k) =0,K, (k) + o, K, (k)
* ‘i‘f LK) K, (D — K, () KyD] K, () D dl - (5.10)

where ¢, o, are arbitrary parameters, independent of k.

5.1. The Limit &1

First consider the low-temperature limit, when k — 1. From (5.2) and
(5.5)

lim G, (k)=p, (5.11)

k—1
where

_ Nil cot(nj/N)
P 4 —2NQ2n+ 1)

i=1

(5.12)

(If =0 and N is even, the j= N/2 term should be replaced by the limiting
value —n/4N.)

We can in principle make standard low-temperature series expansions
about the k=1 case, expanding ¥, in powers of k> =1—k’, provided we
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restrict attention to the region —n/2 <u,<u,<m/2. It follows that g, x,,,
G, can be similarly expanded, and hence, from (5.1), so can A(k). Thus,
there is at least a formal series expansion:

Mk) = i A (1 — K2y (5.13)

[Note that the Fourier coefficients G, (k) are not series expandable in this
form: this is because the higher coefficients in the expansion of G(k, u) are
not Fourier analyzable: they have poles at u = + 7/2, which in turn is due
to the singularity in v when sinu=k"1]

When k- 1, for n>0,

K k)~ —Ink’;  Ki(k)—n/2 (5.14)

and, from (5.13), A(k) tends to finite limit. It follows that the integral in
(5.10) is convergent at /=1, and that, for n >0,

g,=0, o, =2p,/T (5.15)

5.2. The Limit k-0

Now consider the self-dual case & — 0, when we expect the system to
be critical. Then v,=0, 6,=¢,=u,/N, and the weights W,,, W,, depend
on u,, u, only via the difference u, —u,. From (2.13) it follows that g,/p is
a constant (independent of p). From (4.4) and (4.13), k°G,, i, k’G(u, k)
must therefore tend to a limit, independent of p or u. Hence k*G (k) must
tend to zero for n > 1, while from (4.14) we expect k*A(k) to tend to a limit
(actually zero).

Now consider Eq. (5.10). When k£ — 0,

2
K,,(k)~n24"1<nn> k>, n>0

2 -1
K,’,(k)~n12“"‘2(nn) k= nxd (5.16)

Ky(k)~ —Ink

For n>0, we can rewrite the integral of the first term in the integrand
of (5.10) as the difference of two integrals: from /=0 to 1, and from /=0 to
k. This decomposes k2G, (k) into two terms, one of which is proportional
to k*K.(k), and hence does not tend to zero as k — 0, while the other term
does tend to zero. It follows that the first term cannot occur, i.e., the net
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coefficient of k’K/(k) must be zero. Using (5.15), this implies that, for
nzl,

[ LIk Al di= —p, (5.17)

Equation (5.10), for n= 1, can then be written as

Py

2 K 2 ! ﬂ
Golk) = == K (k) f lKj(l)A(l)dl—;K,,(k)f IK, (1) K.(1) A1) dl
0 k
(5.18)

5.3. The Function A(k)

Remembering the implicit dependences on k, we have gone from
functions of three variables (¥, ,,) to functions of two (u,, v,, x,, ¥,,
G,= G(u,, k)), then to functions of one («, , J, 4, u). We are now at the
deepest level of this sequence: we want to solve the linear integral equation
(5.17) for A(k).

The following method is probably not the most elegant, but at least it
demonstrates that there is a unique solution that is expandable in the form
(5.13), and enables us to examine the critical £ — 0 behavior.

Define, for m a nonnegative integer and » real, n> —1/2:

X,,,,,:4j01 IK2(I)(1 — %) dI (5.19)

Then in Appendix A we show that, for m> 1,

Ton= 2. (J+n+1/2)73

Jj=0
Xin= (20" +1/2) gon—1 (5.20)
(m+ 1)3 Xm+1,n: (2m+ 1)(2n2+m2+m + 1/2) an#mBXm'—l,n

For n large, y,,, has an asymptotic expansion in powers of n~2:
Yn= Y. Cpn (521)

r=m+1

with leading coefficient

Comm+1= (m1)}/[22m +1)!] (5.22)
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Substituting the series expansion (5.13) into (5.17), using (5.14), we
get, for n= 1,

Z an’lmz -_4pn (523)

Equation (5.12) can be written, for n > 1, as

Pn=%N_l (N —2j) cot(nj/N) (524)

~ 4N’n* — (N —2j)?

Clearly, p, can be expanded in powers of n~2 Even though the series
(5.21) is only an asymptotic one, it follows that both sides of (5.23) can be
expanded in powers of n~2 Equating coefficients of n~2 gives a linear
equation for 4,; the coefficient of n~* gives an equation for 4, and A,; that
of n=° gives 1q, A;, 4,; and so on. In this way we can in principle
systematically calculate A4, 4,, 4,,.., and hence the function A(k). In
particular, we get

N—-1
do=N"2 Y (2j—N)cot(mj/N) (5.25)
j=1
In practice we can streamline this procedure. Consider the equation,
true for n = 1,

1
2 _ 42

Y Amnbm = (5.26)
m=0

where a is fixed, |a| < 1/2, and we want to solve for the u,,. From (5.21),
Xmn has an asymptotic expansion in inverse powers of n? — g%

KXmn = z dmr(nZ_aZ)Ar (527)
r=m+1
so in terms of these coefficients d,,,,, (5.26) becomes, for r =1,

r—1
Z dmry'm = 5r,1 (528)
m=0

Also, substituting (5.27) into (5.20), for m>0 and r > 1,

m+1Y dpyr,=@m+2)d,, 1 +Cm+1)2a +m*+m+1/2) d,,
—~md,,_,, (5.29)

(taking do; =1/2, d_,, =0, and d,,, =0 if r <m).
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Multiplying (5.29) by u,,/(2m + 1), summing over m, and using (5.28),
we get, for r> 1,

r—1
S dyv, =0 (5.30)
=0
where, for m>=0,
I (m+1)»
vm=mum_1—(2a2+mz+m+1/2)um+m#m+1 (5.31)

(taking u_, finite).
Now the only solution of (5.30) is

v, =0, mz0 (5.32)
so {5.31) is a recurrence relation for the y,,. From the r =1 case of (5.28) it
is readily seen that

g =2 (5.33)

so the p,, are defined by (5.31)-(5.33).
However, this recurrence relation is very like that for the x,,,. In fact it
becomes precisely the same if in (5.31) we replace y,, by 2m+1) %,., and a

by n. If we extend the definitions (5.20) to real (positive or negative) values
of n, then it follows that

Xemya ™ Xm,—a

= (4m+2) (5.34)
XO,G_XO,—a
4m + 2 cos® na
=TT anna (Xm,a= Xm.—a) (5.35)

From (5.24), —4p,, is a linear combination of terms (n*> — a*)~*, where
a={N-—2j)/2N. Hence, A, is the same linear combination of the pu,,
obtained above:

2m + 1 N1t 9]
Aom = 557 N Z (N—2j) {Sm ﬁ} (Xm,(N—Zj)/ZN-Xm,(2j~N)/2N) (5.36)

Using (5.13) and (5.19), we get
4 N—-1 . -, ch
/l(k) = ;{3]\[—2 jzl (N— 2_]) S ﬁ
12— k-2 K
I, Ty (Kb - D = Ky a0l (33)

0
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The problem is now solved: A(k) is given by (5.37); G, (k) by (5.10),
(5.15), (5.18); G,= G(k, u,) by (5.5); and x, by (4.13). Then y, is given, to
within an additive multiple of k*/k’>, by (4.12); A4,,, ¥,, are given by
(3.42)—(3.46), to within additive functions of u,—u, only—these can be
determined from (3.25).

The resulting expressions can probably be simplified: some thoughts in
this direction are offered in Appendix B.

5.4. Ising Case (N=2)

When N =2 the chiral Potts model reduces to the usual Ising model.
In this case the above equations give

Pn=(—7/8)6,0,  Alk)=0
G (k)= (—1/4) Ki(k) d,6
Glk, u)= —(2m) " Ky(k)
x,= —k’Ky(k)/(2m cos v,,)

(5.38)

k W, , d
yp—m {m‘FKo(k) -C-i-;v—;ln @l(wp, k)}

where @,(u, k) is the usual Jacobi elliptic theta function, and w,, is given by
sin u, =sn(w,, k), oS u, = cn(w,, k), cos v, =dn(w,, k) (5.39)

I have verified that these results follow from Onsager’s solution,?’ using
Eq. (11.7.24) of ref. 2.

This w, is the “natural” rapidity variable, in the sense that the
Boltzmann weights and free energies (for N = 2) are functions only of £ and
the difference w, —w,. From (3.44), g, = ——sz(’)(k)wp/27r, so g, is propor-
tional to this variable. Indeed, for any model with the difference property,
this is a consequence of (2.13). This suggests that in some sense g, may
always be a “natural” rapidity variable: it would be interesting to consider
(for arbitrary N) the analyticity properties of ¥, as a function of g, and g,
for fixed k.

6. CRITICAL BEHAVIOR

When &k — 0, the integral in (5.37) is dominated by the contribution
from / small, and the sum by the j=1 and N—1 terms. Then, using the
second form in (5.7),

_ 8rsin(2n/N) Il 1°=1

M) ~ N o B+ 122

(6.1)
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where
r=[(N—2)/4n>N] tan(n/N) I'*(1/N)/T"*(2/N) (6.2)
0=4/N (6.3)

The integral in (5.38) can be extended to the interval 0 </ < cc. Then
from Eq. (3.194.6) of Ref. 13 we obtain

Mk)~ —4N~"2(N—2) rk®—* (6.4)

Note that £*i(k) does tend to a limit (namely zero) as k — 0, as expected.
From (5.10) and (5.18), it follows that for n>0, as k-0,

. w2 TN 20N e s
R AL (62)

These results are true for N> 3. When N=2, r=0, and (6.5) is indeter-
minate for n=0: from (5.38) and (5.16) we then have Gy(k) ~ (In k)/4.

Using (4.13) and (5.5), working to order k? in terms that are indepen-
dent of u,, and to order k°*? in terms that do depend on u,:

_ ¥ 9 ¥
i vowy L v

k?*?%cos 2u, (6.6)

From (4.20), working to order k*:
a(k) ~ (—2¢/N) K® + o, k2 (6.7)

where o, is a constant of integration. It follows that Eqs. (4.12) are satisfied
(to the relevant orders), provided y, is given to order k°*2 by

yo=k*(e+ayu,)— k°*2sin 2u, (6.8)

,
N?—-4
where ¢ is another constant (independent of £ and p).

The constant ¢ arises from the degree of freedom discussed in (4.16): it
cancels out of (3.12), (3.16), (3.45), and (3.46), and so is of no interest. The
constant «, can be determined from the rotation symmetry requirements
(3.32) and (3.36). Using (3.44), they imply the exact relation

Yap—¥p=(N—1)k*/(Nk'?) (69)

Since y, is obtained from y, by replacing u, by u, + n, we see that (6.8) is
consistent with (6.9) provided

2, =(N—1)/Nn (6.10)
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Substituting these results for x,, y, into (3.45) and (3.46) and
integrating, we get (to order %*?)

N—-1
A=, —u,) + EN k*(u, —u,) cos(u, + u,)
Nrk®+2

_ ZN—_'_W_;T)sin(u,,—u‘,) (6.11)

The function J(u, —u,) is independent of k, being the value of 4,
when k=0, ie., at criticality. Our model then reduces to the self-dual Z,
model of Fateev and Zamolodchikov,*!% and we regain the “difference
property” of previously solved models: the weights and free energies
depend on u, and u, only via u,—u,. (There are other models,!"'%)
distinct from ours and having the difference property that also become the
Fateev—Zamolodchikov model at criticality.)

Fateev and Zamolodchikov obtained J(u) by the “inversion relation”
method. In principle it should be possible to obtain it more rigorously from
the above equations by integrating (3.45) all the way from k=1 [where
(3.25) and (3.42) give 4,,] down to k£ =0. I have not yet done this, so here
I simply follow Fateev and Zamolodchikov. The method depends on the
difference property: in particular, from (3.22) we have f,, = f(u,—u,),
where

In fluy=4In N— [(N—1)/N]In[2 sin(x/2)]

+ N N}il JIn[2 sin(u + /N (6.12)

j=1

The inversion relation (3.40) implies

Jw)y+J(—u)=0 (6.13)
while the rotation symmetry (3.30) implies
Juw)—In flu)y=J(n—u)—In f(n —u) (6.14)

If we make the standard assumption'?) that y,,,, ¥,,, 4, are analytic
in the vertical strip 0 <Re(u,—u,) <=, apart from possible logarithmic
branch point singularities at u,—u,=0, 7 arising from the Boltzmann
weights becoming infinite, then J(u) is analytic for 0 < Re(u) <=, and it
follows that

Ju)=In f(u)~In[ W,,(1, 1) W,.(1,1)]

_ Jw sh ux sh(n — u)x sh(N—1) nx

o x ch? mx ch Nnx dx (6.13)
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where W, (1, 1), W,(1, 1) are here evaluated from (3.1)-(3.8) with k=0
(and hence 0,=¢,=u,/N), and with u,—u,=u (This u is the o of
Ref. 15.) (The derivation parallels that of Section 5.1 of ref. 12. Note that I
am using this nonrigorous “inversion relation method” only as a shortcut
to calculating J(u). It is not the method used elsewhere in this paper.)

The Boltzmann weights W,,, W,, can be expanded in powers of k2, so
k? plays the role in this model of the temperature deviation from criticality,
T—T,. We note immediately from (6.11) that the dominant singular
contribution to the free energy is proportional to k?*2 If we make the
standard convention that this is (7. — 7)* % this « being the specific heat
critical exponent, then we have

a=1—-0/2=1-2/N (6.16)

which is the result (1.1).

7. SUMMARY

Apart from the number N of spin states, there are three parameters in
the chiral Potts model; p, ¢, and k. In terms of p and k (we often let the &k
dependence be implicit) one can define related variables u,, v,, 8,, 4,, as in
(3.1)-(3.3).

The Boltzmann weight function W,, depends on these parameters only
via two quantities: 0,—¢, and 0,—¢,. Similarly, W,  depends only on
8,—0, and ¢,—¢,. I have shown in this paper how these simple proper-
ties, together with the star-triangle relation satisfied by the model, can be
used to calculate the free energy. The solution is contained in Eq. (5.37) for
A(k); (5.10) or (5.18) for G, (k); (5.5) for G,=G(u,, k); (4.13) for x,; (4.12)
for y,; (3.45) and (3.46) for 4,,; (3.44) for g,, h,; (3.41) and (3.42) for the
free energies Y3, ,,, V,,. The partition functions of the honeycomb,
triangular, and square lattices are given by (2.11) and (2.16). In particular,
in Section 6 these equations are used to obtain the critical behavior of the
free energy, the value 1 —2/N is found for the exponent .

A key equation is (5.1). The homogeneous form of this equation (with
A=0) is a linear partial differential equation for G(u, k). This equation
separates, having solutions K, (k) cos 2nu and K,(k) cos 2nu. This has been
an essential feature of this solution.

More remains to be done: one would hope that the result (5.37) for
A(k) and the consequent results for the other functions can be simplified. In
Appendix B a few thoughts in this direction are put forward.

This lengthy calculation has been motivated by the fact that the chiral
Potts model appears to provide a quite new solution of the star-triangle or
Yang-Baxter relation: one in which the usual difference property
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(W,q, W,, depending only on p—q and k) is absent. In previously solved
planar models, notably the Ising," eight-vertex,'” and hard-hexagon"®
models, this difference property has led naturally to the use of Jacobi
elliptic functions and to an interesting collaboration between physics and
mathematics. It seems likely that this new solution (which includes the
Ising model as a special case) will extend this interaction.

APPENDIX A

Here I establish the relations (5.20) for the integrals (5.19). I generalize
the problem and define, for m a nonnegative integer and —1<c—
a—b<l1, ¢>0,

INa)Irb)I'(c—a)I'(c—b)sinn(a+b—rc)
I'*(c) n

Im(aa ba C) =

1
xj (1—x)"x“"'Fla, b;c; x) Flc—a,c—b; c; x)dx (A1)
0

F(a, b; c; x) is the hypergeometric function (Section 9.100 of ref. 13),

I'(c) i[‘(a+j)1”(b+j)x"
T(@) I(b) Tct )

j=0

F(a, b;c; x)=

(A2)

Also, from §9.131.2 of ref. 13:
F(c—a,c—b;c;x)

=I”(c)l’(a+b——c)

_ b e—qg— 1:1—
@ 1) Flc—a,c~byc—a—b+1; x)

F(c)F(c—a—b)F

=) e e Th)

(a,b;a+b—c+1;1—x) (A3)

Now use the general formula (A2) to expand the rhs of (A3) in powers of
1 — x. Substitute the result, for F(c —a, ¢ — b; ¢; x) only, into (Al). We get a
weighted sum of integrals

1
j (1—x)"~"' x*~'F(a, b; ¢; x) dx (A4)
0

where p>0, c+p—a—b>0. From §7.512.4 of ref. 13, (A4) is equal to

) rp)Mc+p—a—>b)
INc+p—a)I(c+p—Db)

(AS)
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Using also the identity I'(1 — p) I'(p) = = cosec np, we thus obtain

Lab o)=Y (J+_'m).

j=o J

« Ic—a+ ) Ic—b+ )} (c—a—b+j+m+1)
INe—a+ j+m+ ) I(c—b+j+m+ 1) I(c—a—-b+j+1)

Ia+ I+ j)I(a+b—c+j+m+1)
Na+j+m+ W) I'b+ j+m+1)a+b—c+j+1)

} (A6)

In particular, for m =90,

20

1 1
ol = 2, e wmer) @

For m=1,2,3,.., the summand in (A6) is still a rational function
of j, though it becomes progressively more complicated. Making a partial
fraction decomposition of the summand, I,(a, b, ¢) can in principle be
expressed as a weighted sum of Euler psi functions (using §8.363.3 of
Ref. 13). Proceeding in this way, we have obtained the relations

(l1—a~b)c+a*+b*—1 2a+b~-c)

Il(a,b,C)z (a—b)z—l ]0(a3b9C)+(a_b)2_l (AS)
2m+1(1—a=b)c+a*+b*—1—m—m?
= I b’
I, ..{a b, c) pror| @B —mri)y (b, )

m[m?* — (¢ —a—b)?]
(m+1)[(a—b)*—(m+1)’]

From (5.7), (5.19), and (A1),

I, (a,b,c) {A9)

B 7
T 2sinn(a+b—c

Lmn )Im(a, b, c) (A10)
evaluated in the limit when a, b, and ¢ become n+ 1/2, v+ 1/2, and 2n+ 1,
respectively. Dividing (A7)-(A9) by 2(a+ b—c) and taking this limit, we
obtain the desired formulas (5.20).

APPENDIX B

Equation (5.1), or equivalently (4.14), is a linear partial differential
equation for G(u, k). It is a corollary, via (4.13), of the pair of (4.12) of
pde’s for x,, y,. Once these functions are known, 8ps Py Apgy W ,y, and g
are given by (3.41)-(3.46), to within appropriate integration “constants.”



666 Baxter

All these equations are linear. It is natural to regard the right-hand
sides of (5.1), (4.14), and (4.12), involving «, B, 6, and 4, as “forcing terms,”
and to start by considering the homogeneous equations obtained by
replacing a, B, d, and 4 by zero.

Here I show that these homogeneous equations have a simple set of
solutions. In the course of deriving (5.1), I noted that the homogeneous
equation has the solution G(u, k)=secv=(1—k?cos?u) > However,
the lhs of (5.1) is translation-invariant under u —»u—¢, where £ is a
constant (independent of both u and k). Defining

' =u—¢, sin v" =k sin /, cos v’ =(1—k%sin?u')*  (Bl)

(so v is a function of u and k), it follows that a solution of the
homogeneous equation (5.1) is

G(u, k) =sin &/cos v’ (B2)

Writing u,,, v, for the values of #', v" when u is replaced by u,, we
immediately obtain from (4.13)

x, =k sin &/(cos v, cos v,,) (B3)
Then both the homogeneous equations (4.12) are satisfied by
v, =k?(cos u, cos u, + k'* sin u,, sin u,)/(k'* cos v, cos v},) (B4)
and (3.45) and (3.46) by
A,,=In {

7 !
 COS U, COS v, + COS 1, COS }

o, .
SIN U, COS v, + SIn u, COS ¥
’
P

!
q
; : -
Sin u, cos v, + Sin u, Cos v,
q

’ I
COS u,, COS v, + COS U, COS U,

(B5)

The equations are linear, so any linear combination of the forms (B3)-
(B5) (with different values of £) is also a solution. For the N =2 Ising case,
a, B, 6, and A are indeed zero, and the result (5.39) for x, can be written as

X,= (B6)

k2 ro da

 4ncos v, o (1 +Kk2sinh? a)'?

For a given value of u between —n/2 and n/2, change the contour of
integration to the line 7,,() = u; then change the variable to £, where o=
i(u—&); so & is pure imaginary. We get

x, = (i/4r) j

“ [k¥(cos v, cos v,)] de (B7)

1
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It follows at once that the Ising model result for 4, is obtained from (B5)
by multiplying by i/4n sin ¢ and integrating with respect to ¢ from —ico to
ico. [Except for an additive term that depends on k, u,, and u, only via
u,—u,. we have noted before that such terms cancel out of (3.45) and
(3.46), but can be determined from the low-temperature k=1 limit.]

It seems likely that the general homogeneous solution of (5.1), (4.12),
(3.45), and (3.46) can be expressed as a linear combination of (B3)-(B5).

For N =3, the functions «, 8, 4, and 4 are not all zero. Even so, it may
be possible to extend these ideas to the inhomogeneous equations, and
thereby obtain a more transparent and explicit solution for the free energy
of the chiral Potts model.
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